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A Factorial Model of Aggregate Spatzo- Temporal Behavzor.
Application to the Diurnal Cycle

The cross-sectional nature of much social data, coupled with the static view

provided by maps and current spatial data handling software, have produced a

tradition of research on urban spatial structure that is largely two-dimensional and

derived from residential locations. The paper presents an analysis of a space-time

diary-data set collected in Halifax, Nova Scotia. A series of transformations are used.
to convert the individual diary records to a three-mode matrix of intensities, which.

is then analyzed using the PARAFAC three-mode factor model. Home / work is

found to be the strongest organizing dimension of the urban space-time, followed by

entertainment, shopping, and education / work. We show how these dimensions

appear to varying degrees in different locations, time periods, and human activities. -
The paper argues for a dynamic view of urban spatial structure in which only the

physical facilities remain static.

INTRODUCTION

Maps are static, two-dimensional representations of geographic phenomena, and
therefore of necessity better at capturing the static dimensions of geographic
distributions. Although digital geographic databases are not limited by the same
technological constraints (Goodchild 1988; Marble 1990), they remain primarily
stores of digital representations of maps, and thus similarly static and two-dimen-
sional (Langran 1989, 1992; Langran and Chrisman 1988; Raper 1989). Recently,
Couclelis (1991) has commented that current GISs are also limited in their views
of space (Gatrell 1983; Sack 1980). The map reflects a container view of space, and
records faithfully the absolute locations of objects. However, almost all of our
understanding of social process is built upon a relative view of space, in which
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interaction plays a much greater role than absolute location [there are echoes of
this point in the familiar site/situation dichotomy and in Haggett's distinction
between location and place (Haggett 1979)]. In summary, it is contended that
analysis of social process requires a time-dependent, multidimensional, relative
space rather than the static, two-dimensional, absolute view embedded in current
GIS technology.

The purpose of this paper is to examine this contention in the setting provided
by a major study of the time geography of a Canadian city (Janelle and Goodchild
1983a, b; Goodchild and Janelle 1984; Janelle and Goodchild 1987; Janelle,
Goodchild, and Klinkenberg 1988). The term “time geography” was in use in
Sweden in the mid-1960s, but was first used in English by Hiigerstrand (1970) in a
discussion of the dynamic element in human spatial behavior (see also Parkes and
Thrift 1980). For example, time dependence on a scale of months or years
underlies studies of migration; on a scale of minutes and hours it underlies studies
“of commuting, shopping, and other aspects of daily human space-time behavior [for
an interesting discussion see Holly (1978)]. Previous papers have described earlier
analyses, particularly those concermed with the diurnal geography of the city. In
this paper we discuss the modeling of space-time.behavior both at the individual
level, as trajectories in three-dimensional space-time in the style of Higerstrand,
and also at the aggregate level, as time-slice replications of urban ecology. We
discuss some of the issues presented by the need to handle these types of data,
particularly given the prevxously descrlbed limitations on current geographical data
‘handling software.

While the context of the paper is provided by the llterature on empirical studies
of space-time behavior and factorial ecology, and by the issues of spatial data
representation and handling embedded in GIS, it is also appropriate to develop
relationships between this work and the literature on urban spatial dynamics
(Pumain 1991). In recent years there has been substantial interest- in housing
dynamics and their impact on urban structure (Clark, Deurloo, and Dieleman
1984; van Wissen and Rima 1988; van Wissen, Rima, and Nijkamp 1986), particu-
larly on linkages between household demographic processes and spatial behavior.
Another class of theoretical models of the urban system is based on extensions to
the land use theories of von Thiinen (see, for example, Fujita 1989) and deals with
competition for space between residential and industrial land uses, coupled with
factors of transportation and congestion. Dynamic models of shopping behavior
have been developed by Wrigley and others (Hauer, Timmermans, and Wrigley
1989; Wrigley 1988) to describe spatial behaviour within a fixed and known urban
structure. Finally, the relative merits of longitudinal and cross-sectional analysis for -
understanding dynamic spatial behavior have been discussed by Pickles and
Davies (1989).

The first section of the paper describes the Halifax time geography project and .
its diary and Census data sets, and outlines the overall objectives of the project.
The second section discusses some of the issues encountered in managing and
manipulating the data. This is followed by a review of availablé models -for
aggregate space-time data, and by a discussion of the application of one particular
model, PARAFAC (Harshman 1976; Harshman, Ladefoged and Goldstein 1977).

THE HALIFAX TIME GEOGRAPHY PROJECT

Despite its obvious and widely publicized limitations, the Census remains the
major source of information on the geographical distribution of population in most
countries. Our empirically based understanding of social processes is therefore
limited by two important problems. First, although most activities and expendi-



%

Michael F. Goodchild, Brian Klinkenbergi, and Donald G. Janelle / 279

tures occur outside the home, the location of individuals is determined solely by
place of residence. A second and related issue is that much geographical research
is thus restricted to the night-time locations of the population, and unable to focus
on day-time locations, or diurnal movement.

Between October 1971 and March 1972, a study was conducted of the activities
and movements of 2,141 people in the Halifax Census Metropolitan Area, Nova
Scotia. Sampling occurred in a randomly chosen subset of sixty-eight of the 380
Census Enumeration Areas of the Halifax CMA. Respondents recorded what they
were doing; where, and with whom for twenty-four hours. The data set used in the -
analysis reported here covers only the 1,561 respondents who were living in the
cities of Halifax and Dartmouth; who recorded activities on the weekdays, Monday
through Friday; who were aged from nineteen through sixty-four; and where at
least one person was employed in the household. Activities were expressed in
terms of ninety-nine categories, and geocoded to 100-meter accuracy. All respon-
dents were matched with full Census returns from the 1971 Census of Canada {see
Elliott, Harvey, and Procos (1976) for an overview of the data collection, and
Cosper and Shaw (1984) for an assessment of the data set].

The general objective of the Halifax project has been to describe and model
respondents’ movements and activities, and to generalize these to statements about
the population as a whole. In the Hégerstrand view, individual space-time behav-
ior can be understood in terms of constraints—economic, social, biological, techno-
logical, or geographical. At the aggregate level, the data allow us to build up a
picture of the city not only at night, but as it changes through the diurnal cycle, as
people move from residence to place of work and to locations of shopping and
entertainment. Instead of the static, residential view, we see the city as a container -
within which its population moves continuously. Patterns build and decay through-
out the daily cycle, as people congregate and disperse. Socioeconomic variables
such as wealth are continuous attributes of individuals but only transient attributes
of places; as people move, they carry many of their socioeconomic characteristics
with them. Much human spatial behavior is determined at least in part by
socioeconomic aggregations, such as occur in many residential neighborhoods.
Thus we envision urban ecology as a dynamic system, created by the movement of
individuals and at the same time responsible for many aspects of that movement.
We are interested in knowing how urban ecology varies during the day, and

whether it is stronger at certain parts of the diurnal cycle than others.

DATA MANAGEMENT ISSUES

In principle, the Halifax data set identifies the location and activity of any
respondent at any time during the sample period. The original data contain
approximately 65,000 such records, giving the start time and activity class for each
activity event reported. Thus the data set forms a collection of approximately
65,000 points in three-dimensional space-time, with a spatial resolution of 100
meters and a temporal resolution of 1 minute. By sorting, we can link the records
of any one individual into a sequence of activities, and thus into a line or trajectory
in space-time. Vertical lines indicate static activities; for activities movement, such
as travel to work, the corresponding lines .are oblique. However, since the data
contain no information on the route of movement, a straight line in space-time
provides only a crude approximation to actual location, as it assumes the ability to
travel in straight lines at constant speed. Nevertheless it would be possible to
compute a point distribution of the respondents at any given time during the day,
as a cross-section of space-time (Hiigerstrand 1970).
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TABLE 1
Average Durations and Representative Hours of Aggregated Classes of Activity
Duration Hour of highest
Activity ‘ (minutes) involvement

Sleeping 416.5 1:00 A.m.-2:00 a.M.
Traveling to work 15.7 ) 8:00 a.m.—9:00 a.M.
Working before noon 76.7 9:00 AM.—10:00 A.m.
Lunch 31.0 12:00 p.m.-1:00 p.M.
Working after noon 64.9 2:00 p.m.~3:00 p.M.
Traveling after work 15.7 5:00 p.m.~6:00 p.M.
Early evening discretionary 572 : 6:00 p.M.~7:00 p.M.
Late evening transfer to bed 10:00 p.m.~11:00 p.M.

Although it provides a precise description of locations and activities, the repre-
sentation of the data set as a collection of 1,561 trajectories in space-time, with
over 65,000 straight line segments, is far from a convenient basis for analysis or
modeling. Instead, we aggregated the data mto measures of intensity in the three
modes of time, location, and activity.

To simplify the temporal dimension, we undertook an analysis of the frequency
of activities occurring at any time of day. Table 1 shows the eight hours most
representative of various aggregated classes of activity. For example, the period
1:00 A.M.—2:00 a.m. is when the greatest proportion of the sample reported

sleeping. The mean duration of each activity is also indicated—respondents -

indicated 416.5 minutes sleeping on average. 10:00 p.M.~11:00 p.m. is the hour
when the largest number of respondents reported transfer to bed, -although this
was not identified as a specific activity in the survey. Note that the mean duration
for working activity before noon, for example, is defined as the total time reported
for that activity event by all respondents for whom the activity event occurred at
least in part in that hour, divided by the total number of respondents: we would
expect this figure to be substantially less than the average number of minutes
worked before lunch. For each of the eight periods shown in Table 1, we tabulated
the numbers of respondents involved in each type of activity. Some respondents
were counted more than once, if they reported more than one activity in the
period.

Aggregation of the spatial dimension is more difficult because of the stratified
sampling design, which selected respondents having residential addresses in only
sixty-eight of the 380 Census Enumeration Areas. Although the respondents visited
a much larger sample of EAs during the day, at no time did their geographical
distribution approach uniformity. For analysis, we aggregated the data into geo-
graphical reporting zones satisfying the following criteria:

1. Each zone contained at least one of the sixty-eight sampled EAs;

2. The number of zones was approximately equal to the number of Census
Tracts in the Halifax CMA;

3. The zones were constructed from contiguous aggregations of EAs;

4. The zones contained equal shares of the sample of respondents in each of the
eight time periods defined in Table 1; :

5. The zones were compact and singly bounded; and

6. Residential populations were homogeneous across zones on the seventeen
selected demographic variables shown in Table 2

These contrived reporting zones were termed pseudo-Census Tracts or PCTs.
"All six requirements cannot be satisfied simultaneously, so the twenty-nine zones
shown in Figure 1 represent a compromise, particularly between requirements 4
and 6 above.

-
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TABLE 2 : . .
Demographic Variables Used to Ensure Homogeneity in Building Pseudo-Census Tracts (PCTs)

AVGCH Children per household

AVGPPH Persons per household

AVGRPD Rooms per household

AVGRENT Rent per household

AVGINC Income per household

PFEM Percent female .
PWDS Percent widowed, separated, or divorced
PSIN . Percent single

FAMHUNV Percent with university-educated family head
ANGRD . Percent Anglican

RCJRD Percent Roman Catholic or Jewish
DWELOW Percent of dwellings owned

WFEMP Percent employed

DWELSD Percent in single detached homes
POP2059 Percent 20 to 59 years old

DWELNOAT Percent households without autos
WFMANCON

Percent blue collar labor

.Fic. 1. Outline Map of the Pseudo-Census Tracts (PCTs) Used for Analysis. Each zone is
approximately homogeneous on fourteen census variables, compact and singly bounded, and containing
approximately equal numbers of respondents in each time period
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TABLE 3

Major Features of the Halifax /Dartmouth Metropolltan Area and. Correspondmg PCTs
Halifax CBD 4,9
Dartmouth CBD 27
Major shopping centers 12, 14,23
Universities 5,6
Hospitals 8
Low income residential : 10, 16, 22
Military installations 16, 19, 20
Port installations 3,17

To construct the PCTs, twenty-nine EAs were first randomly selected from the
sixty-eight sampled EAs to act as zone cores [see Rossiter and Johnston (1981) and
Goodchild and Hosage (1983) for similar procedures.]. Adjacent EAs were then
added one at a time, so as to produce the minimum increment in the total
within-group sum of squares on the seventeen demographic variables, until all EAs
had been added to a zone. Because this procedure gave no weight to criterion 4
above, a process of manual adjustment, reassigning EAs from one zone to another
without violating the contiguity constraint 3 above, was used to create an improved
balance of populations in each zone and time period.

The city of Halifax is centered on a slope immediately adjacent to an arm of the
Atlantic, and has spread to include extensive suburbs. The city functions as the
political, administrative, and commercial capital of the province, and also includes
major concentrations of medical and postsecondary education facilities. Across the
arm lies the city of Dartmouth, which includes many of the military installations as
well as suburbs, and a small CBD. Major geographic features of the urban area and
their corresponding PCTs are shown in Table 3.

For each PCT in each of the one-hour time periods shown in Table 1, we
computed the characteristics of the population present by identifying those respon-
dents who reported being located in the PCT during that period. From the activity
records, we calculated the numbers of respondents involved in various activities,
weighted by the proportion of the hour spent in each activity. In addition, we
identified the numbers in the various “with whom” and “site” categories shown in
Table 4. In total, nineteen activity categories, ten “with whom” and eight “site”
categories were tabulated for each of the twenty-nine PCTs and eight time periods.
The result is a three-dimensional (“three-mode”) matrix of intensity scores for
eight times, twenty-nine location zones, and thirty-seven activity-related variables
(termed simply “variables”). This 8 X 29 X 37 matrix was the basis for the
analysis and modeling reported in this paper. In what follows, we use the subscript
i (i=1,...,29) to refer to locations, j (j = ,37) to variables, and k
k=1,. 8) to time periods. x,; denotes an element of the data matrix, an
estimate of the probability that a randomly chosen respondent located in PCT i in
time period k would have reported being involved in activity j at a random time
in that one-hour interval, found by dividing the total time reportedly spent by
respondents in activity j in PCT i during time period k by the total time spent by
all respondents in PCT i during time period k. Note that a single respondent can
contribute to the totals for more than one activity in any one time period, and to
the totals for more than one PCT.

THE MODEL

The proposed model adds the temporal dimension to traditional perspectives on
urban ecology. We conjecture that diurnal variation in the distribution of popula-
tion over the city, and their activities, can be described through a small number of
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TABLE 4
The Thirty-Seven Variables Used in PARAFAC Analysis

ACTCOD1 Work income-producing time
Work nonincome-producing time
Travel to and from work
Household work
Household maintenance
Child care
Marketing and shoppmg for household -
Other household work .
Travel related to household
10 . Sleep and personal care
11 ) Meal times
12 - Educational time -
13 Recreation outdoors and sports
14 Entertainment away from household
15 Leisure: socializing .
6 Leisure: radio and TV
17 Y Reading, noneducational
- Other leisure time
19 . ’ Travel for leisure only

WHOMO Alone
: With spouse or fiancé
With cﬁold of household
With adult of household
With relative
With colleagues
With organization and club associates
With neighbors
With nonbusiness associates
With others and unknown

At home

At work place

Someone else’s buildin
Outdoors travel by public transit
At public or private building
Leisure indoors

Restaurants and bars

All other places
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basic, underlying dimensions. These dimensions are inherently unobservable, but
appear in each location (PCT), time period, and activity to a degree that is unique
to that location/time/activity combination. The effects of location, time, and
activity may be to some extent separable; underlying dimensions may appear more
strongly in some time periods, or in some locations, or in some activities. The
objective of the analysis will be to determine the nature of each underlying
dimension, and the degree to which it appears in each location, time, and activity.

A variety of approaches to this problem have been discussed in the literature.
Taylor and Parkes (1975) restructured their three-mode data to two modes by
regarding time periods as additional locations. In our case, the 8 X 29 X 37 matrix
would become 232 X 37. Their analysis was conducted on artlﬁcally constructed
data using factor analysis, with the following model:

x; = La,F, + U, . (1)
- .

where [ (I = 1,...,232 in our case) denotes the location-time combinations in the
renumbered rows of the matrix. In this factor analytic model the Fs are
the (unknown) underlying dimensions (“factors™) of variability, each F,, denotes
the amount of underlying dlmensmn p (p = 1,..., s) present in each location-time
combination, and the a,, or “loadings” denote the amount contributed by factor p
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to variable j. The Us or “uniqueness” measures represent the degree to which
each variable j is unique, rather than representative of underlying dimensions.
This model represents an interesting extension of conventional factor analysis to
the time-dependent case [for a review of the use of factorial methods in the
analysis of static, residence-based data see Davies (1984]. But despite its simplic-
ity, because time periods appear as additional locations, it follows that information
on the behavior of one PCT over time periods, or of geographical variation in any
one period, is lost in this approach.

An alternative approach would be to analyze each time “slab” separately, by
using eight replications of two-dimensional analysis. The model in this case would

be

xijk = Za_]pk ipk + U - (2)

yielding independent sets of factors in each time period k. Because of the inherent

problems of comparing certain types of factorial solutions (see, for example, Berry .
1971), it would be necessary to adopt one time period as a standard, and to rotate
all other solutions to it using one of the so-called Procrustean methods before

comparison could take place. The results of Procrustean rotations are known to be

difficult to interpret (Berry 1971). Moreover, results would be invariant under

rearrangements of PCTs within time slices, and thus insensitive to the behavxor of

specific PCTs through time:

Both of these methods reduce the three-mode matrix to two modes, and in domg
so prevent the identification of factors operating in all three modes. By contrast,
methods of three-way factor analysis treat all three modes, and provide results that
are sensitive to rearrangements of observations in either space or time. Thus it
seems clear to us that such three-way methods are essential to an understanding of
space-time behavior. Various three-way models have been described [for a review
of three-way methods see Kroonenberg (1983)], and a selection will be reviewed
here briefly. INDSCAL (Carroll and Chang 1970) treats one dimension as a
replication (Kroonenberg 1983: 54):

= thpglph]p "_} (3)

and extracts one set of factors. The treatment of the third mode as a replication is
reflected here by the use of i’ rather than k, to indicate a replication of a location
rather than a time period. Two matrices of “loadings” are extracted, denoted here
by G and H, and the matrix U represents the unique variation present in each
observation. Hanham (1976) reanalyzed Taylor and Parkes” data using INDSCAL
and reported interesting results, despite the artificiality of the data.

Tucker’s model 3 (Tucker 1963; Levin 1963) treats all three modes similarly, by
defining a core matrix C:

Z Z thphjqekr pqr + U . . (4)

Three sets of common factors are obtained, one for each mode: p (p = 1,...,s)
denotes a factor specific to location, g (¢ = 1,...,¢) a factor specific to variable,
and r (r = 1,..., u) a factor specific to time. The matrices G, H, and E describe
the relationships between common factors and observed locations, variables, -and
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times, respectively. Finally the elements of U define the unique variability present
in each observation. The model allows different numbers of underlying dimensions
for each mode, and gives them different interpretations, whereas our original
hypothesis concerned one set of underlying dimensions appearing in all three
modes. Langlois (1983) reported an analysis of the Taylor and Parkes data using
this model. .

For our analysis we chose the PARAFAC model of Harshman (Harshman 1976;
Harshman, Ladefoged, and Goldstein 1977) for two reasons: first, all three modes
are treated similarly, which seems appropriate given the nature of the problem;
and second, it is the simplest of its class. In the PARAFAC model the contribution
of each factor p (p = 1,..., s) to the three modes of location, variable, and time is

defined by three matrices, denoted here by G, H, and E, respectively:

i = Zgiphjpekp + Ui)'k- (5)
P . . .

Thus g, indicates the degree to which underlying dimension p appears in
location i; h;, indicates the same factor's appearance in activity j; and e,
indicates its appearance at time period k. Following common practice in factorial
methods, we call the first term on the right-hand side “communality” and the
second term “uniqueness.”

The PARAFAC model satisfies our basic requirement of modeling variation in all
three modes simultaneously in terms of s common underlying dimensions. It
makes no assumptions about the relative amounts of each dimension appearing in’
any time, location, or variable. The one key limiting assumption is that the g, h,
and e elements multiply. Thus for a given i, j pair, the contributions of the
common dimensions to the observed values of x in two time periods k and k' will

always be in the same ratio. As with all such factorial models, equation (5) implies

strong assumptions about the form of the common factors’ contributions to the
observed variables. The goodness of fit of the model provides a measure of the
validity of these assumptions.

The data used in this study consist of the numbers of respondents engaged in
given activities in given time periods, expressed as percentages of the sample
observed to be in a given PCT in a given time period. Because some activities are
less frequently observed than others, we normalized the variables across locations
and time periods: ’

x;jk = (xijk - aj)/sj v (6)

where a; and s; are the mean and standard deviation respectively of all x,;, for a
given j, that is, the mean and standard deviation of all observed values of a given
variable. This normalization provides a better basis for comparison between
variables. We also centered the results across locations, yielding a mean result of
zero across all PCTs. :

The PARAFAC model is calibrated by least squares, that is, by minimizing the
sum of squared deviations between the input values x}; and the predictions from
the common factors, the first term in the right-hand side of equation (5); this is
equivalent to minimizing the sum of squared elements of U. The sum of squared
deviations is expected to decrease monotonically with the number of factors s. As
with other factorial models, the advantage of better fit with higher s is offset by
the added model complexity and increased difficulty of interpretation. By experi-
menting with different values of s, we found the solution for s = 5 to be the best
compromise, and the next section describes the major features of this solution.
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TABLE 5 '
Percentages of Variation Explained by Five-Factor PARAFAC Solution by Time Period
1:00 a.M.-2:00 a.m. . 262
8:00 A.M.=9:00 a.Mm. 15.1
9:00 A.M.—10:00 a.m. 379
12:00 p.m.=1:00 p.Mm. : 39.2
2:00 p.m.~3:00 p.m. 35.6
5:00 p.M.—6:00 p.m. 24.4
6:00 p.mM.~7:00 p.M. ' 17.8
10:00 .M.~11:00 .M. ©3L7
INTERPRETATION

Of major interest are the goodness-of-fit statistics by time period, PCT, and
variable. Table 5 shows the percentage of variation explained (attributable to
common, underlying factors) by time period. Communality is least in the commut-
ing periods, when any part of the city is temporarily occupied by highly diverse
respondents, as transition occurs between major activities and associated locations.
Interestingly, communality is not as high during the early morning period, domi-
nated by sleeping, as during the working or early evening hours. It appears less
easy to explain the geography of nighttime behavior in terms of. underlying
dimensions, and easiest to explain the geography of midday behavior. We conceive

TABLE 6
Percentages of Variation Explained by Five-Factor PARAFAC Solution by Variable

ACTCOD1 Work mcome-producmg time 65.1
2 Work nonincome-producing time 42.9
3 Travel to and from work 1.7
4 Household work 50.0
5 Household maintenance 11.0
6 Child care 30.5
7 Marketing and shopping for household 714
8 Other household work 3.8
9 Travel related to household 18.5
10 Sleep and personal care - 497
11 : Meal times 22.2
12 Educational time 579
13 Recreation outdoors and sports 10.1
14 Entertainment away from household 45.3
15 Leisure: socializing 7.0
16 Leisure: radio and TV 9.0
17 Reading, noneducational 6.0
18 Other leisure time 89
19 Travel for leisure only 15.0
WHOMO Alone 20.8
1 With spouse or financé . 48.6
2 With child of household : 38.1
3 With adult of household 2.6
4 With relative : 25.3
5 With colleagues ’ 65.4
6 With organization and club associates 139
7 With neighbors 4.7
8 With nonbusiness associates : 20.6
9 With others and unknown : 224
SITEO At home 85.4
1 At work place 711
3 Someone else’s buildin 0.7
4 Outdoors travel by pub ic transit 7.8
5 At public or private building 68.8
6 Leisure indoors 51.1
8 Restaurants and bars 43.7

9

All other places 22.2
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of this as a periodic building and breaking down of geographic structure, as the
city’s population rearranges itself during the moming and evening travel periods.

Table 6 shows the percentage of variation explained by variable. Of the activity
variables, marketing and shopping (ACTCOD?7) have the greatest communality, as
they concentrate strongly in certain time periods and locations. Educational time
(ACTCODI12) also shows strong communality, as it also occurs for the 19-64 age
group in strongly concentrated locations and time periods. High communalities
are also observed for income-producing work (ACTCODI1), household work
(ACTCOD4), and sleep and personal care (ACTCODI10), which are also concen-
trated in space-time. o -

Of the “whom” variables, activities with colleagues (WHOMS) and spouse or
- flanceAWHOM1) show the highest communalities; activities with an adult of the
houséhold (WHOMS3) are very rare for the respondents (the majority of these are
joint activities involving both a 19-64 year old respondent and a parent living in

Fic. 2. Percentage of Variation Explained by the Five-Factor PARAFAC Solution in Each of
Twenty-nine Pseudo-Census Tracts (PCTs).
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the household) and show little space-time communality. The “site” variables show
the highest communality for home and workplace.

Figure 2 shows the percentage of variation explained in each of the twenty-nine

PCTs. As we might expect from the previous discussion of time periods and
variables, the highest communalities are found in the Halifax CBD (PCTs 4, 9), a

major concentration of daytime employment; the university area (PCTs 5, 6); the
concentration of shopping centers in PCT 14; the area of high daytime employment
in the Dartmouth CBD; and in the middle-income suburbs
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Fic. 4. PARAFAC Solution—Mode B (Space /Tracts)

Figures 3, 4, and 5 show the loadings matrices H, G, and E (variables, locations,
and times), respectively, for the five factors. Only the highest and lowest loadings
are identified in each case.

Factor I captures the home/work dimension, differentiating between home-
related and work-related activities (Figure 3), home and work locations (Figure 4),
and home and work time periods (Figure 5). In the H matrix dealing with
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In the G matrix, dealing with locations, we find Factor I most positively
associated with the workplace PCTs, particularly the Halifax CBD and the
universities (4, 5, 6, 8, 9) and most negatively associated with the suburban dormi-
tories. In the E matrix, relating Factor I to time periods, the most positive loadings
are those for 9:00 a.m. through 3:00 p.m. (3,4,5) and the most negative for
1:00 A.M.—2:00 a.m., the sleep period. Home/work is the most powerful cleavage
revealed by this analysns of the space-time geography of Halifax, and clearly '
related to activities, locations, and time periods.

Factor II, the second highest in order of contribution to communallty is
assocnated positively with leisure activities (* entertamment away from home” and

“in travel for leisure”); and with the “site” variables “leisure indoors” and “at
restaurants /bars.” The Halifax CBD tracts 4 and 9 contain high concentrations of
entertainment facilities, and the highest loading in matrix E is in the evening hours
(10:00 £.mM.-11:00 p.m.). Factor II serves to identify evening entertainment, in
terms of activities, times, and locations. _ ,

Factors III, IV, and V capture increasingly minor dimensions. Factor III-
differentiates shopping from other activities, and has its highest loadings in the
PCTs with_major shopping facilities (12, 14,23) in the early afternoon period
(2:00 p.mM.—=3:00 p.m.). Factor IV captures the differences between work and
education. Although these activities are. correlated in space and time, and both
contributed positively to Factor I, they are sufficiently independent to be differen-
tiated by Factor IV. Finally Factor V differentiates between solo .and group
activities, having high positive loadings for “sleep and personal care,” “at home,”
“alone,” and in the period 1:00 A.M.-2:00 a.m., and high negative loadings for
“leisure: socializing” and *with relative.” The high negative loading for the period
8:00 a.M.—9:00 a.m. (Figure 5) may be the effect of time spent taking family
members to school or child care.

CONCLUSIONS

The predominantly static view of geographical distributions that is encouraged
by the nature of the census of population in most countries, and by current GIS
technology, is clearly inadequate for understanding human spatial behavior, and its
temporal variability. We have taken the view in this paper that the city is best
regarded as an empty space or shell, within which movements occur in diurnal and
longer-term cycles. Conventional factorial analyses of cross-sectional census data
(for example, Davies 1984) are capable of detecting very long-term changes related
to life-cycle status, but tell us little about the massive rearrangements of population
that occur in the city every day. By contrast, our study shows the importance of the
third dimension in identifying traditionally ignored aspects of human behavior. The
census provides one view of the city—one slice of the places/times /variables
matrix analyzed in this study. There is a need to incorporate a broader view of the
city into a GIS, to consider ways of restructuring the spatial hierarchy that are
more reflective of daytime activity patterns.

The ecological characteristics of a neighborhood are a major determinant of
human spatial behavior, and are also to some extent a result of that behavior. Thus
the socioeconomic characteristics of the residents of a neighborhood affect the
likelihood of migrations into and out of the area, and these in turn modify the
area’s characteristics. Migration affects the spatial structure of the city slowly, on a
time scale of years, whereas commuting and entertainment behaviors are deter-
mined by similar mechanisms operating on much shorter time scales, of months or
even weeks.
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While census data are easy to come by, and the census provides some longitudi-
nal coverage of residential locations, there are almost no data readily available on
temporal variations over periods of less than five years. The data used in this paper
provided individual records of daily activities for a sample of over 1,500 people,
but required a series of transformations and discretizations before they could be
used effectively in modeling space-time distributions. However, individual diaries
represent perhaps the only feasible way of collecting information on space-time
behavwr New technologles, particularly cellular phones and the development of

mtelllgent vehicles,” may offer opportunities for studying space-time behavior in
the not 'too distant future, but issues of confidentiality are llkely to be important
also.

The -Census Tract concept used in many countries is an attempt to define -
- longitudinally stable, socially homogeneous areas for analysis. But like the census
itself, their homogeneity is entirely defined by nighttime, residential population.
The pseudo-Census Tracts or PCTs defined in this paper are an attempt to extend
the Census Tract concept to the temporal domain, by measuring homogeneity for
the population present in each distinct time period. Residence is only one of a
number of significant urban locations occupied by individuals during the diurnal
cycle. Patterfis of intraurban mobility in the late twentieth century often indicate
that place of resxdence is far from central to daily activities.

Several previous studies have analyzed aggregated space-time data using two-
mode methods, by analyzing each time slice separately, or by regarding time slices
as additional locations and thus substituting space for time. The results of such
methods are invariant under rearrangement of locations within time slices, and
thus disregard much of the space-time structure. Three-way factorial methods,
such as those discussed in this paper, allow the analysis to be embedded in a
space-time framework and thus to test theories of space-time behavior.

The PARAFAC model used in this paper has distinct advantages over other
three-mode factorial methods in its simplicity, its homogeneous treatment of the
three modes, and its robustness in calibration. Like all models it makes certain
assumptions about the form of relationship between underlying factors and observ-
able variables, but these seem parsimonious and intuitively acceptable, and pro-
vide reasonable results. By using PARAFAC, we have tested a simple model in
which a single set of basic underlying dimensions of space-time behavior appear to
different degrees in each time period, location and variable, and in which these
contributions combine multiplicatively.

Our diurnal, space-time data set showed strongest differentiation between
home- and work-related activities, and identified entertainment and shopping as
strong dimensions of the space-time structure as well. The strongest communality,
or degree of consistency with basic, underlying dimensions of space-time behavior,
was observed at midday, and the least during commuting, and communality 'is
higher during work than during sleep. Marketing and shopping showed the highest
communality among activity variables, and on the spatial dimensions, communality
was highest in the areas of major daytime concentration of activity. Loosely, we can
interpret high communality as indicating simplicity and order, and conclude that
the city’s space-time structure is most easily understood and least chaotic during
working hours and in areas dominated by daytime activity.

Although the data set used in this study is a rich source of information on
space-time behavior, it is now over twenty years old, and reveals patterns in only
one Canadian city. Unfortunately there are few comparable data sets, particularly
ones which provide the same levels of spatial and temporal resolution. An updated
Halifax survey might reveal interesting changes in space-time behavior over the
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past twenty years. We hope that the methods developed in this study and detailed
in this paper may provide a framework for comparative studies.

With an understanding of the structure of the city in space and time, it should
now be possible to ask questions about the relationship between the behavior of
the individual and the structure. How do individuals move within the structure?
When and where is individual behavior most strongly linked to the structure, and
when and where is it most independent?

Scale is a much neglected factor in the tradition of aggregate urban analysis
represented here. The basic mechanism proposed, which links individual behavior
to the characteristics of neighborhood, is strongly scale-dependent, but scale is
treated only indirectly through the size of the locational unit, whether it be a
Census Tract or the PCT used here, or a larger or smaller unit. Unfortunately it is
often impossible to examine scale effects because of the nature of the ‘data. In our
case, the small sample size of respondents makes it impossible to use many more
than twenty-nine reporting zones, but it would be possible to use larger zones,
particularly if’ overlaps were allowed. However, it seems clear that a concerted
investigation of scale effects would require a-much larger sample of respondents,
or a much longer time period, or both.

Similar comments can be made about temporal resolution. The results in this
paper were obtained from a discretization of time into eight periods, and while a
finer temporal resolution would have been possible, sample sizes would have been
correspondingly reduced.

More serious, perhaps, is a general point that can be made about all factorial
methods, whether two- or three-mode: that results are invariant under reordering
of either the temporal or the spatial dimension. Spatially, this means that any
information present in the relative locations of observations is lost to the analysis,
and is a serious flaw in a purportedly spatial analysis. It can be solved only by
models and methods of analysis that are independent of the space-time sampling -
frame, and regard space and time as fundamentally continuous (Tobler 1989).

LITERATURE CITED

Berry, B. J. L., ed. (1971). “Comparative Factorial Ecology.” Economic Geography 47, supplement.

Carroll, J. D,, and J. J. Chang (1970). “Analysis of Individual Differences in Multidimensional Scaling
via an N- Way Generalization of Eckart-Young Decomposntlon Psychometrika 35, 283-319.

Clark, W. A. V., M. C. Deurloo, and F. M. Dieleman (1984). “Housing Consumption and Residential
Mobility.” Annals, Association of American Geographers T4, 29-43.

Cosper, R. L, and S. M. Shaw (1984). “The Validity of Time-Budget Studies: A Comparison of
Frequency and Diary Data in Halifax, Canada.” Leisure Science 7, 205-25.

Couclelis, H. (1991). “Requirements for a Planning-Relevant GIS: A Spatial Perspective.” Papers in
Regional Science 70, 920

Davies, W. K. D. (1984). Factorial Ecology. Aldershot: Gower. »

Elliott, D., A. S. Harvey, and D. Procos (1976). “An Overview of the Halifax Time-Budget Study.”
Society and Leisure 3, 145-59.

Fulj)xta M. (1989). Urban Economic Theory: Land Use and City Size. Cambridge: Cambridge University

ress.

Gatrell, A. C. (1983). Distance and Space: A Geographical Perspective. Oxford: Clarendon.

Goodchild, M. F. (1988). “Stepping over the Line: Technological Constraints and the New Cartogra-
pby.” The American Cartographer 15, 311-20.

Goodchild, M. F., and C. M. Hosage (1983). “On Enumerating All Feasible Solutions to Polygon
Aggregation Problems.” Modelling and Simulation (Proceedings of the Fourteenth Annual Pittsburgh
Conference on Modelling and Simulation) 14, 591-95.

Goodchild, M. F., and D. G. Janelle (1984). “The City around the Clock: Space-Time Patterns of Urban
Ecological Structure.” Environment and Planning A 16, 807-20.

Higerstrand, T. (1970). “What about People in Regional Scnence? Papers of the Regional Saence
Association 24, 7-21.




294 / Geographical Analysis

Haggett, P. (1979). .Geography A Modern Synthesis. New York: .Harper and Row.

Hanham, R. Q. (1976). “Factorial Ecology in Space and Time: An Alternative Method.” Environment
and Plarmmg A 8, 823-28.

Harshman, R. (1976). “PARAFAC: Methods of Three-Way Factor Analysis and Multidimensional
Scaling Accordmg to the Principle of Proportional Profiles.” Ph.D. dissertation, Department of
Educational Psychology, University of California, Los Angeles.

Harshman, R., P. Ladefoged, and L. Goldstein (1977). “Factor Analysis of Tongue Shapes.” Journal of
the Acoustzcal Society of America 62, 693-707.

Hauer, J., H. Timmermans, and N. Wrigley (1989). Urban Dynamics and' Spatial Choice Behavior.
Dordrecht: Kluwer.

Holly, B. P. (1978). “The Problem of Scale in Tlme-Space Research.” In Timing Space and Spacing

Time 3: Time and Regional Dynamics, edited by T. Carlstein, D. Parkes, and N. Thrift, pp. 5— 18
London: Arnold.

Janelle, D. G., and M. F. Goodchild (19833) “Transportation Indicators of Space-Time Autonomy
Urban Geography 4, 317-37.

(1983b). “Diurnal Patterns of Socnal Group Distribution in a Canadian City.” Economic
" Geography 59, 403-25.

(1987). “The Home-Work Relationship and Urban Ecological Structure.” In Spatial Mobility
"“and Urban Change, edited by O. Verkoren and J. van Weesep, pp. 39-50. Department of Geography,
University of Utrecht.

Janelle, D. G, M. F. Coodcluld. and B. Klinkenberg (1988) ‘Space-Time Diaries and Travel
Characteristics for Different Levels of Respondent Aggregation.” Environment and Planning A 20,
891-906.

Kroonenberg, P. M. (1983). Three-Mode Principal Components Analysis: Theory and Application‘
Leiden: DMSO.

Langlois, A. (1983) ‘Les transformations de l'espace social de la ville: une application de I'analyse
factorielle A trois entrées.” The Canadian Geographer 27, 67-73.

Langran, G. (1989). “A Review of Temporal Database Research and Its Use in C[S Applications.”
International Journal of Geographical Information Systems 3, 215-32.

(1992). Time in Geographical Informatwn Systems. London: Taylor and Francns

Langran, G., and N. R. Chrisman (1988). “A Framework for Temporal Geographical Information.”
Cartographica 25, 1-14. o

Levin, J. (1963). Three-Mode Factor Analysis. Urbana: University of Illinois Press.

Marble, D. F. (1990). “The Potential Methodolo%)cal Impact of GIS on the Social Sciences.” In

Inte eting Space: GIS and Archaeology, edited by K. M. S. Allen, S. W. Green, E. B. W. Zubrow.
on: Taylor and Francis.

Parkes D., and N. Thrift (1980). Times, Spaces, and Places: A Chronogeographic Perspective. New
York: Wlley

Pickles, A. R., and R. B. Davies (1989) “Inference from Cross-sectional and Longitudinal Data for
Dynamic Behavioural Processes.” In Urban Dynamics and Spatial Choice Behaviour, edited by
J. Hauer, H. Timmermans, and N. Wrigley, pp. 81-104. Dordrecht: Kluwer.

Pumain, D. (1991). Spatial Analysis and Population Dynamics. J. Libbey Eurotext.

Raper, J., ed. (1989). Three-Dimensional Application in GIS. London: Taylor and Francis.

Rossiter, D. J., and R. J. Johnston (1981). “Program GROUP: The Identification of All Possible
Solutions to a Constituency-Delimitation Problem.” Environment and Planning A 13, 231-38.

Sailic, R. llD. (1980). Conceptions of Space in Social Thought: A Geographic Perspective. London:

acmillan.

Taylor, P. J., and D. N. Parkes (1975). “A Kantian View of the City: A Factorial-Ecology Experiment in
Space and Time.” Environment and Planning A 7, 671-88.

Tobler, W. R. (1989). “Frame Independent Spatial Analysis.” In Accuracy of Spatial Databases, edited
by M. F. Goodchild and S. Gopdlx London: Taylor and Francis.

Tucker, L. R. (1963). “Implications of Factor Analysis of Three-Way Matrices for Measurement of
Change.” In Problems in Measuring Change, cdited by C. W. Harris. University of Wisconsin Press.

van Wissen, L. J. G., and A. Rima (1988). Modelling Urban Housing Market Dynamics: Evolutionary
Patterns of Households and Housing in Amsterdam. Amsterdam; North Holland.

van Wissen, L. J. G., A. Rima, and P. Nijkamp (1986). “ Urban Household Dynamlcs Methodology and
Application.” Systemi Urbani 2/3, 179-85.

Wrigley, N. (1988). Store Choice, Store Location, and Market Analysis. London: Routledge.




