CSISS WORKSHOP

Introduction to Spatial Pattern Analysis in a GIS Environment

Measures of Spatial Pattern: Global and Local Statistics

Arthur Getis
Pattern Statistics

• GLOBAL
 \(I, c, K, G, Knox, Mantel, Tango, \)
 Grimson, Cuzick and Edwards, Kernels, Scan

• LOCAL
 \(I_i, c_i, G_i, G_i^*, GWR, O_i \)
Global Statistics

• Nearest Neighbor
• K-Function
• Global Autocorrelation Statistics
 Moran’s I
 Geary’s c
 Semivariance
Matrix Representation: WY

- **W**
 - The Spatial Weights Matrix
 - The Spatial Association of All Sites to All Other Sites
 - d, d^2, $1/0$, $1/d$

- **Y**
 - The Attribute Association Matrix
 - The Association of the Attributes at Each Site to the Attributes at All Other Sites
 - $+,-,/,x$
The Spatial Weights Matrix

W is the formal expression of the spatial association between objects

(it is the pair-wise geometry of objects being studied).
Typical W

- Spatially contiguous neighbors (rook, queen: one/zero)
- Inverse distances raised to a power: \(1/d, 1/d^2, 1/d^5\)
- Geostatistics functions (spherical, gaussian, exponential)
- Lengths of shared borders (perimeters)
- All centroids within distance \(d\)
- \(n^{th}\) nearest neighbor distance
- Links (number of)
The Attribute Matrix

Y

The variable under study. One variable at a time. Interval scale (other scales under special conditions).

For example, residuals from regression; a socio-economic variable (number of crimes, household income, number of artifacts, etc.)
Attribute Relationships

Y

• **Types of Relationships**
 Additive association (clustering): \((Y_i + Y_j)\)
 Multiplicative association (product): \((Y_i Y_j)\)
 Covariation (correlation): \((Y_i - \bar{Y})(Y_j - \bar{Y})\)
 Differences (homogeneity/heterogeneity): \((Y_i - Y_j)\)
 Inverse (relativity): \((Y_i/Y_j)\)

• **All Relationships Subject to Mathematical Manipulation**
 (power, logs, abs, etc.)
WY: Covariance

- Set W to preferred spatial weights matrix
- (rooks, queens, distance decline, etc.)
- Set Y to $(x_i - \mu) (x_j - \mu)$
- Set scale to $n/W \sum(x_i - \mu)^2$
- $I = n \sum \sum W_{ij} (x_i - \mu)(x_j - \mu) / W \sum(x_i - \mu)^2$

 where W is sum of all W_{ij} and $i \neq j$

This is Moran’s I.
WY: Additive

- Set W to 1/0 spatial weights matrix
- 1 within d; 0 outside of d
- Set Y to $(x_i + x_j)$
- Set scale to $\Sigma W_{ij}(d) / \Sigma (x_i)$
- $G(d) = \Sigma W_{ij}(d) (x_i + x_j) / \Sigma (x_i)$ and $i \not\sim j$

This is Getis and Ord’s $G.
WY: Difference

- Set W to preferred spatial weights matrix
- Set Y to $(x_i - x_j)^2$
- Set scale to $(n-1)/2W \sum (x_i - \mu)^2$
- $c = (n - 1) \sum \sum W_{ij} (x_i - y_i)^2 / 2W \sum (x_i - \mu)^2$
 where W is sum of all W_{ij} and $i \neq j$

This is Geary’s c.
WY: Difference

- Set W to 1/0 weights matrix; 1 within ah and 0 otherwise; a is an integer; h is a constant distance
- Set Y to $(x_i - x_j)^2$
- Set scale to $1/2$
- $\chi(ah) = 1/2 \sum \sum W_{ij} (x_i - x_j)^2$

This is the semi-variogram.
Local Statistics

• Global Statistics reworked for focussing on i

• LISA statistics (Local Indicators of Spatial Association)

 Moran’s I_i, Geary’s c_i

• Clustering Statistics

 Getis and Ord’s G_i and G_i^*
The Getis-Ord Approach

\[G_i^*(d) = \frac{\sum_j w_{ij}^*(d) x_j}{\sum_j x_j} \]

- Normally distributed
- Tests for statistical significance
The G_i^* Statistic

- The G_i^* statistic is local, that is, it is focused on sites and is normally distributed. It is designed to yield a measure of pattern in standard normal variates.
- Indicates the extent to which a location (site) is surrounded to a distance d by a cluster of high or low values.
- The input is a file containing coordinates for each house and, for example, the Y variable. The user specifies maximum search distance and number of increments.
- The output file contains a listing of the $G_i^*(d)$ value for sample point at a specified distance (d).
The Critical Distance

- The G_i^* values are computed around each observation as distance increases.

- When the absolute values fail to rise, the cluster diameter is reached. This is the critical distance d_c.

- Spatial association weakens beyond d_c.
Example Ranges

(SA = Santa Ana)