An Introduction to Pattern Statistics

- Nearest Neighbors
 - The CSR hypothesis
 - Clark/Evans and modification
 - Cuzick and Edwards and controls
- All events
 - k function
 - Weighted k function
 - Comparative k functions
Nearest Neighbors

• The CSR Assumptions
 1. All possible sites are equally likely to receive a point
 2. The placement of a point is independent of the placement of all other points

• Quadrats or distances

• The Poisson Distribution
 \[P(x) = \frac{\lambda^x e^{-\lambda}}{x!} \] For \(x=0,1,2,... \)
Clark/Evans and Modification

- Distance-based

- Finds expected distance to nearest neighbor in a CSR pattern: \[E(d)\]

\[E(d) = 0.5 \left(\frac{A}{N} \right)^{0.5} + \left[0.0514 + 0.041/ \left(\frac{N}{N^0.5} \right) \right] \frac{B}{N}\]

and

\[\text{Var(mean d)} = 0.070 \frac{A}{N^2} + 0.037 \frac{B}{N} \left[\frac{A}{N^5} \right]^{0.5}\]

- \[Z = \frac{\text{(observed mean d) - E(d)}}{\text{Var(mean d)}}^{0.5}\]

where \(A = \text{area}, \ N = \text{total number of points}, \ B = \text{length of the perimeter}\)
Cuzick and Edwards and Controls
(k nearest neighbors)

- A method for detecting spatial clustering for populations with non-uniform density.
- Label cases as \(x_i \) and controls as \(y_i \).
- Counts the number of cases \((x_i) \) among the k nearest neighbors \((x_i, y_i) \) to each case.
- Finds the theoretical distribution by permutation.
- Asymptotically normal. Provides test: the locations of the cases and controls follow a non-homogeneous Poisson process.
K Function Analysis: A Global Statistic

- \[L(d) = \left\{ \frac{A[\Sigma\Sigma K(d_{ij})]}{\pi N(N-1)} \right\}^{\frac{1}{2}} \]

- where \(K(d_{ij}) \) is the number of pairs of points within \(d \) of \(i \), and \(A \) is the area of the region under study.
- Used to discern the clustering pattern of the specified variable within the entire study area.
- An output file gives a table showing \(L \) values for each distance \((d)\) increment. \(E[L(d)] \) in a random distribution is \(d \).
- Used to give access to controls.
Gi*: Significant Clusters of Adult Mosquitoes at a Distance of 1 meter

0 100 200 300 Meters
Pattern of Houses in Maynas Study "A"
K-Function (second-order analysis)

Your results:

The input data file: test.dat
The total number of points: 160
The minimum x coordinate: 1.000000
The maximum x coordinate: 99.000000
The minimum y coordinate: 0.000000
The maximum y coordinate: 98.000000
The total area: 9604.000000
The maximum search distance: 100.000000
The step size: 10.000000
The number of permutation for significance envelope: 10

<table>
<thead>
<tr>
<th>Distance</th>
<th>Observed L(d)</th>
<th>Minimum L(d)</th>
<th>Maximum L(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0000</td>
<td>10.13852</td>
<td>9.82932</td>
<td>10.74250</td>
</tr>
<tr>
<td>20.0000</td>
<td>19.97004</td>
<td>19.41033</td>
<td>20.91819</td>
</tr>
<tr>
<td>30.0000</td>
<td>29.04746</td>
<td>29.05554</td>
<td>31.51734</td>
</tr>
<tr>
<td>40.0000</td>
<td>39.27937</td>
<td>39.09975</td>
<td>42.09944</td>
</tr>
<tr>
<td>50.0000</td>
<td>50.12230</td>
<td>40.81038</td>
<td>52.01389</td>
</tr>
<tr>
<td>60.0000</td>
<td>59.11874</td>
<td>50.35136</td>
<td>61.42906</td>
</tr>
<tr>
<td>70.0000</td>
<td>66.99494</td>
<td>66.97278</td>
<td>69.04510</td>
</tr>
<tr>
<td>80.0000</td>
<td>73.29763</td>
<td>73.19291</td>
<td>75.35072</td>
</tr>
<tr>
<td>90.0000</td>
<td>79.12397</td>
<td>78.25648</td>
<td>80.07432</td>
</tr>
<tr>
<td>100.0000</td>
<td>82.25774</td>
<td>79.72802</td>
<td>83.23661</td>
</tr>
</tbody>
</table>

Report problems with this script to Andy Long.
cgi.tcl script creator: Don Libes, of NIST
cgi.tcl script butcher: Andy Long, of BioMedware.
\[L_w(d) \]

\[L_w(d) = \left[\frac{\{A \sum_i \sum_j u_{ij}^{-1} I_d(d_{ij} \leq d)x_i x_j\}}{\{\pi[(\sum_i x_i)^2 - \sum_i x_i^2]\}} \right]^{1/2} \quad i \neq j \]
K-function for adult *Aedes aegypti*
Weighted K-Function Analysis for *Aedes aegypti*
Adults in Maynas Study "A"
Weighted K-Function Analysis for *Aedes aegypti* Pupae in Maynas Study "A"
Weighted K-Function Analysis for Positive Containers in Maynas Study "A"
Weighted K-Function Analysis for All Water-Holding Containers in Maynas Study "A"

- - - All water-holding containers
- - - - Houses

Random expectation of L
POINT PATTERN ANALYSIS

-Versions 1.0a-

Developed by
Jared Aldstadt, DongMen Chen and Arthur Getis
San Diego State University

- Basic descriptive statistics
- Nearest neighbor analysis
- Refined nearest neighbor analysis
- K-Function (second-order analysis)
- Weighted K-Function analysis
- Cluster Knox Time-space analysis
- Join-count statistic
- Global Moran's I
- Global Geary's c
- General Getis-Ord's G
- Local Ii statistic
- Local Gi statistic
- Local Gi* statistic
- Local K-Function

Stat-specific Documentation by Jared Aldstadt
General PPA documentation by the authors.

Upload your own ASCII data for use in PPA

Please: no text in your files: just numbers, ASCII number!

- Text in the file (e.g. a word at the end of the file) causes ppa to choke, and leaves the process running on our machines. We then must kill these 'zombie' processes, as they bog down our system.

- At the moment, we kill ALL PPA jobs that are running as of 2:56 AM, Eastern time, to prevent these zombies from taking over the system and driving it into the ground. Try to avoid using the machine at this time!
Upload your own ASCII data for use in PPA

Please: no text in your files: just numbers, ASCII number!

• Text in the file (e.g. a word at the end of the file) causes ppa to choke, and leaves the process running on our machines. We then must kill these 'zombie' processes, as they bog down our system.

• At the moment, we kill ALL PPA jobs that are running as of 2:56 AM, Eastern time, to prevent these zombies from taking over the system and driving it into the ground. Try to avoid using the machine at this time!

• NB: you cannot submit Word documents, Excel documents, or any other binary format and expect useful results! Only ASCII (.txt) files, with the appropriate format, are allowed. You can check the file formats each test requires by selecting the test and examining the example files provided.

<table>
<thead>
<tr>
<th>Name for the file on the server (e.g. my.dat - do not use c:...! - and a short (e.g. eight character) but unique name is better, as it is less likely to be overwritten by someone else).</th>
</tr>
</thead>
<tbody>
<tr>
<td>B:\Criminal\Burglarydata</td>
</tr>
<tr>
<td>These are BINARY formats, and WILL NOT WORK!</td>
</tr>
<tr>
<td>trial.dat</td>
</tr>
</tbody>
</table>

(your file will be deleted from our system after one hour of inactivity).

You can submit multiple files by submitting them one-by-one (and giving them different names!).

Report problems with this script to Andy Long,/cgi.tcl script creator: Don Libes, of NIST
/cgi.tcl script butcher: Andy Long, of BioMedware.
POINT PATTERN ANALYSIS

(Version 1.0a)

Developed by
Jared Altschul, Dongmei Chen, and Arthur Getis
San Diego State University

• Basic descriptive statistics
• Nearest neighbor analysis
• Refined nearest neighbor analysis
• K-Function (second-order analysis)
• Weighted K-Function analysis
• Cluster Knox Time-space analysis
• Join-count statistic
• Global Moran's I
• Global Geary's c
• General Getis-Ord's G
• Local Ii statistic
• Local Gi statistic
• Local Gi* statistic
• Local K-Function

Upload your own ASCII data for use in PPA

Please: no text in your files: just numbers, ASCII number!

• Text in the file (e.g. a word at the end of the file) causes ppa to choke, and leaves the process running on our machines. We then must kill these 'zombie' processes, as they bog down our system.

• At the moment, we kill ALL PPA jobs that are running as of 2:56 AM, Eastern time, to prevent these zombies from taking over the system and driving it into the ground. Try to avoid using the machine at this time!
K-Function

K-function is also called second-order analysis to indicate that the focus is on the variance, or second moment, of pairs of interevent distances. It considers all combinations of pairs of points. It compares the number of observed pairs with the expectation at all distances based on a random spatial distribution of points. The density of points, the borders, and the size of the sample are taken into consideration.

Input

1. The input data file, which should contain N rows of X, Y coordinates, and W values (a column of 1s).
2. The maximum distance that you want to use. The statistically unbiased maximum distance is less than the circumradius of the study area, or one-half of the length of the shortest side of a rectangular study area.
3. The number of increments.
4. The number of permutations for creating the confidence envelope.
5. The output file.

Analysis

K-function analysis is a test of the hypothesis of CSR. The expected value of L(d) is d. The confidence interval in this analysis is generated by examining the specified number of permutations of randomly generated patterns of N points over the whole study area. If for any distance, the observed L(d) falls above or below the expected L(d) the null hypothesis of CSR can be rejected at an appropriate level of significance. The level of significance is determined by the confidence envelope. An observed L(d) below the envelope indicates that the points are dispersed at that distance, whereas an observed above the envelope indicates that clustering is present at that distance.

Formula

\[
L(d) = \sqrt{\frac{1}{\sigma^2(N-1)} \left(\sum_{i,j} \sum_{k=1}^{W} k_i k_j \right)}
\]

where:

\(A\) is the study area,

\(N\) is the number of points.
Formula

\[E(d) = \sqrt{\frac{A \sum_{i=1}^{N} \sum_{j=1}^{N} k(i, j)}{A(N-1)}} \] \[1\]

where:

\(A \) is the study area,

\(N \) is the number of points

\(d \) is the distance

\(\sum_{i=1}^{N} \sum_{j=1}^{N} k(i, j) \) is the number of \(j \) points within distance \(d \) of all \(i \) points

\(k(i, j) \) is the weight, which is estimated by

a) If no edge corrections,

\[k(i, j) = 1 \text{ in case } d(i, j) \leq d \]

\[k(i, j) = 0 \text{ otherwise} \]

b) If a point \(i \) is closer to one boundary than it is to point \(j \), the border correction is employed

\[k(i, j) = \left[\cos^{-1} \left(\frac{\varphi}{d(i, j)} \right) \right]^{-1} \] \[2\]

where \(\varphi \) is the distance to the nearest edge.
Weighted K-Function analysis

Required Information:

Data Filename: trial.dat
maximum distance: 100
number of increments: 10
Number of permutations (for the confidence envelope): 9

<table>
<thead>
<tr>
<th>Sample Data</th>
<th>test.dat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Your data should have the same format!</td>
<td>three columns: x,y,z</td>
</tr>
</tbody>
</table>

Submit Form
This may take awhile, so be patient!
The browser may appear to have stalled, but should eventually show the results (provided your input was valid).

Report problems with this script to Andy Long.
cgi.tcl script creator: Don Libes, of NIST
cgi.tcl script butcher: Andy Long, of BioMedware.
Pattern Statistics

• GENERAL
 I, c, K, G, Knox, Mantel, Tango, Grimson, Cuzick and Edwards, Kernels, Scan

• FOCUSED
 I_i, c_i, G_i, G_i^*, GWR, O_i
Global Statistics

- Nearest Neighbor
- K-Function
- Global Autocorrelation Statistics
 - Moran’s I
 - Geary’s c
 - Semivariance
WY : Covariance

- Set W to preferred spatial weights matrix
- Set Y to
- $(x_i - \mu)(y_i - \mu)$
- Set scale to $n/W \Sigma (x_i - \mu)^2$
- $I = n \Sigma \Sigma W_{ij} (x_i - \mu)(y_i - \mu) / W \Sigma (x_i - \mu)^2$
 where W is sum of all W_{ij}
WY : Difference

- Set W to preferred spatial weights matrix
- Set Y to
 - $(x_i - y_i)^2$
- Set scale to $(n-1)/2W\Sigma(x_i - \mu)^2$
- $c = (n - 1) \Sigma \Sigma W_{ij} (x_i - y_i)^2 / 2W\Sigma(x_i - \mu)^2$

where W is sum of all W_{ij}
Local Statistic

\[G_i^*(d) = \frac{\left[\sum_j w_{ij}(d)x_j - W_j^* \bar{x} \right]}{s\left\{ [N S_{lj}^* - W_j^2^*] / (N-1) \right\}^{1/2}} \text{ all } j \]

\(w_{ij}(d) \) is element of 1/0 spatial weights matrix
where 1 within \(d \) of \(i \), 0 otherwise

\[W_j^* = \sum w_{ij}(d) \]

\[S_{lj}^* = \sum_j w_{ij}^2 \text{ (all } j) \]
The G_i^* Statistic

- The G_i^* statistic is local, that is, it is focused on sites and is normally distributed. It is designed to yield a measure of pattern in standard normal variates.
- Indicates the extent to which a location (site) is surrounded to a distance d by a cluster of high or low values (in this case, we focus on high values).
- The input is a file containing coordinates for each house and, for example, the number of adult *Aedes aegypti*. User specifies maximum search distance (100 meters in this case) and number of increments (10 10-meter increments).
- The output file contains a listing of the $G_i^*(d)$ value for each house at a specified distance (d).
Incidents of Assault

Incidents of Assault
- 1
- 2 - 7
- 8 - 25

Scale: 1 - 2 miles
Statistically Significant Short Distance Clusters

Gi*-Assaults
-1.43 - 1.96
1.96 - 5.72
5.72 - 10.76

Police Beats

1 0 1 2 Miles

N
Crime Clustering Packages

• STAC (Spatial and Temporal Analysis of Crime)
• GAM (Geographical Analysis Machine)
• SaTScan (Spatial and Space-Time Scan Statistic)
• CrimeStat (Crime Mapping Research Center)
Typology of Crime Mapping Applications
(after Craglia, Haining, and Wiles)

<table>
<thead>
<tr>
<th>Application</th>
<th>Data</th>
<th>Scale</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispatching</td>
<td>Seconds/Minutes</td>
<td>Site</td>
<td>Visualization</td>
</tr>
<tr>
<td>Community policing</td>
<td>Hours/days</td>
<td>Neighborhood</td>
<td>Mapping</td>
</tr>
<tr>
<td>Resource planning</td>
<td>Weeks/months/years</td>
<td>City</td>
<td>Analysis/modeling</td>
</tr>
</tbody>
</table>
Problems

- The problem of ellipses
- Smoothing effects
- Hierarchical scales
- Incidents and not risk
Problems with Local Stats

- Global heterogeneity
- Multiple Tests
- Dependent Tests
The O_i Statistic

- The null hypothesis of local autocorrelation
- A recommended partition
Multiple Dependent Tests

- Overlap
- Seemingly independent tests
- Virtual v
Seemingly Independent Tests:

Addressing the Problem of Multiple Simultaneous and Dependent Tests
Appropriate Inferential Bounds?

• Multiple Tests
• Simultaneous Tests
• Dependent Tests
Sidak: \[1 - \alpha = (1 - p)^k \]

Multiple tests but not dependent tests.
Bonferroni: α/k

Multiple tests but not dependent tests.
Virtual v

- $K = mv$

- where v is number of independent clusters,
- and m is number of observations within
- each cluster
Correlation Between Tests = r

- $v = k - r(k-1)$

- and $1 - \alpha = (1 - p)^v$

- when $r=1$, $v=1$; when $r=0$, $v=k$

- lower bound for r: $-1/(k-1)$

- highest possible v: $k+1$
Number of Tests with Dependence

- Possible Clustering of *aedes aegypti* in Mynas Section of Iquitos
- Houses = 543 = k
- Set d=10 meters
- Overlap (r estimated at 0.500)
- \(v = k - r(k - 1) = 271 \)
- for .95 level; \(p^v = (0.989007)^{271} = 0.0500 \)
- \(Z = 2.290931 \)
Data Mining

- Extension of EDA
- Inductive methods
- Substance versus significance
- Selection biases
- Process
Geostatistics

• Semivariance and the Semivariogram

• Kriging
Semivariance

• A measure of the degree of spatial dependence between observations of a regionalized variable.

• Formulation

\[\gamma_h = \sum (x_i - x_{i+h})^2 / 2n \]

where \(h \) is the distance interval between points.

The plot for a number of \(h \)’s is called the semivariogram.
Characteristics of Semivariogram

- Range
- Sill
- Nugget
- Autocorrelation
- Variance = Sill
Semivariograms

- OBSERVED
- THEORETICAL
 - Spherical
 - Exponential
 - Linear (with sill)
 - Gaussian
Intrinsic Stationarity

Variogram analysis cannot proceed without acceptable assumptions, chief of which is intrinsic stationarity.
Kriging

• The Idea of Kriging

• Models
 Simple (punctual)
 Ordinary (punctual)
 Universal (punctual)
 Block
 Cokriging
 Others
Simple Kriging

- \(Z(x_0) = m + YW^{-1}B \)
- where \(m \) = assumed mean (known)
- \(Y \) = observations in the vicinity of \(x_0 \) (-m)
- \(W \) = correlation - semivariance (for all pairs of observations)
- \(B \) = correlation - semivariance (for all pairs between observations and \(x_0 \))
Ordinary Kriging

• \(Z(x_0) = YW^{-1}B \)
Universal Kriging

- Drift
Block Kriging

- Areas or volumes
Cokriging

• More than one variable used to estimate value at a particular location.
Spatial Filtering

- To find the degree to which each social variable is affected by spatial autocorrelation.

- Separate the spatial effects from the non-spatial effects.

- Develop spatial and non-spatial variables.

- Use Getis filtering approach (G_i^* statistic).
Non-Spatial Component of Percent of women married

Nsp_pctmar.shp

- 36.92 - 51.772
- 51.772 - 53.801
- 53.801 - 55.16
- 55.16 - 56.7
- 56.7 - 77.91

909 18 Kilometers
Non-Spatial Component of F96Ed_in

Nsp_Ed.shp

- 6.112 - 26.729
- 26.729 - 30.834
- 30.834 - 33.698
- 33.698 - 38.591
- 38.591 - 65.255

909 18 Kilometers
Large Dataset Problems

- heterogeneity
- partitions
- outliers
- missing data
- single fit
- multicollinearity
- data integration
A Local Variogram (1)

• We may define the effective range of the data as the distance d_r at which the variogram flattens out.

• At any distance less than d_r the correlation between any two pixels is greater than 0. The correlation between pixels d_r apart or greater is 0.
A Local Variogram (2)

• In this approach, we center on a pixel, i, and define the effective continuous region as that which contains:
 1. pixels that are correlated with one another.
 2. a discernible range, d_{ri}.
A Local Variogram \quad (3)

- The number of pixels within the entire dataset is N and the number within the local variogram is M_i.
- M_i represents the partition.
- M may vary for each i^{th} pixel.
- If d_{ri} cannot be found for an i^{th} pixel, any analysis would have to be rethought for that partition.
Finding d_{ri} and, therefore, M_i

$$Q_i = \Sigma \Sigma \rho(u_j-v_k) = \Sigma \Sigma C_{jk}(j,k) \quad j,k \in M_i$$

- which sums the correlations between each pair of members within a trial partition starting with $d = 1$, then $d = 2$, and so on.

- when Q_i fails to increase after d is increased, d_{ri} and, therefore, M_i is reached.
Finding the Sum of the ρ’s:

\[d = 1 \]
Finding the Sum of the ρ’s:

\[d = 2 \]
Sum of the ρ’s

- Autocorrelations (r) are estimated from the M observations as opposed to fitting a variogram model.

- Variogram models (spherical, exponential, linear, Gauss) may be poor descriptors of the spatial autocorrelation in the dataset.
The Number of Correlations for $d=2$

<table>
<thead>
<tr>
<th>Distance</th>
<th>Number of correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>$\sqrt{2}$</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>$\sqrt{5}$</td>
<td>16</td>
</tr>
<tr>
<td>$\sqrt{8}$</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>$\sqrt{10}$</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
Example

For the values of r, d^2 is in parentheses:

$r(1)=0.236$ $r(2)=0.246$ $r(4)=0.215$ $r(5)=0.197$ $r(8)=0.184$
$r(9)=0.158$ $r(10)=0.166$ $r(13)=0.116$ $r(16)=0.106$ $r(17)=0.090$
$r(18)=0.053$ $r(20)=0.062$ $r(25)=0.058$ $r(26)=0.037$ $r(29)=0.036$
$r(32)=0.026$ $r(34)=0.021$ $r(36)=0.028$ $r(37)=0.016$
$r(40 \text{ to } 169)=0$

$Q = 1168.392$

$d_{ri} = 6.325$

$M_i = 129$
Partition Routine