Discovery

Mark Gahegan: GeoVISTA Center, Penn State Geography.
Aim

Analysis is a process...
...with a number of distinct, and not so distinct, stages.
Where do I (my tools) fit into this process?
How might we integrate these stages together in software?

Examples of visualization and machine learning methods
GeoVISTA Studio
Not so much a system to do X but an environment for coordination and deployment of components.
The pursuit of knowledge (deeper or better understanding) is ongoing...

"Systems, scientific and philosophic, come and go. Each method of limited understanding is at length exhausted. In its prime each system is a triumphant success: in its decay it is an obstructive nuisance."

Alfred North Whitehead: Adventures of Ideas
Developments in computer science
"Modern approaches to data analysis... have clarified the fact, known to practicing scientists, that the hypotheses do not always precede the data."

(Velleman & Wilkinson, 1993)
Themes

1. Why do we need help with discovery?
2. How is new knowledge inferred?
3. What tools and techniques are available to help us with inference?
A previous life...Discovering gold deposits

★ Don’t know exactly how gold deposits are signified in data.
★ Don’t know exactly how mineralization occurs in the world.
★ So, discovery is a combination of looking for ‘clues’ in data and using what is found to extend or modify theory accordingly.
1. Why do we need help with discovery?

- Geography has moved from being data poor to data rich in a short space of time...
- Geographic datasets are becoming large, complex and heterogeneous (highly multivariate)...
- We are beginning to address problems that span across several domains of expertise (e.g. impact of Lyme Disease), and we do not fully understand cause and effect.
- Despite enormous efforts in quantification, our understanding of many of the earth’s systems remain non-axiomatic; the systems are ‘open’ and consequently it is not possible to deduce all outcomes from known laws.
1. Why do we need help with discovery?
“Discovery commences with the awareness of anomaly, i.e., with the recognition that nature has somehow violated the paradigm-induced expectations that govern normal science.” (Kuhn, 1962)

“Truth emerges more readily from error than from confusion.” (Francis Bacon, 1869)

... so we need to make mistakes...
... by imposing structures on data, observing the outcomes, and reasoning from what we observe.
2. How we infer (how we think we think...)

"To know what we think, to be masters of our own meaning, will make a solid foundation for great and weighty thought." (C.S Peirce, 1878)

Several styles of inference are possible:
- expert or model driven (deductive),
- Learning from examples (inductive),
- Hypothesis creation (abductive).
2. How we infer (how we think we think...)
Origins of Scientific Reasoning: It’s all Greek to Me!

- **Socrates** claimed to be certain of very little, his relentless questioning challenged existing, widely-held philosophical beliefs, based on: *Truth, Beauty, Virtue* and *Justice*.
- **Plato** (Socrates’ student) established *epistemology* (the study of the nature of knowledge and its justification) based on Socrates’ ideas.
- **Aristotle** (Plato’s student) proposed ways to represent knowledge and a nomenclature for describing it (including inventing the terms: *metaphor* & *hypothesis*).
Aristotle invented the *syllogism*...

\[
\text{IF} \\
\text{Nothing absent minded is an elephant} \\
\text{AND} \\
\text{All professors are absent-minded} \\
\text{THEREFORE} \\
\text{No professor is an elephant}
\]
Deduction < Science

- Deduction is often treated as the only legitimate form of inference for a respectable scientist...
- **BUT** it cannot generate new knowledge!
- Deduction is what computers are good at.
- In many situations, deductive rules get too messy, and besides, we (people) do not usually describe objects and categories according to precise values of their attributes.
Induction

Induction operates by “learning from known examples”.

The inductive learning hypothesis: "A hypothesis constructed from enough training examples will generalize to unseen examples”

A large portion of human knowledge is thought to be captured and formed inductively: e.g. we synthesize models of categories from examples given and use these models to identify new examples.
Learning via Induction

labeled examples

Learning Phase

Input vector of \(p \) attributes: the training values for a single ‘case’

Desired outcome: continuous number or categorical value

Generalization phase

Generalized model for mapping \(K \) to \(P \)

APPLICATION PHASE: model is applied

TRAINING PHASE: model is learned

Inductive Learning
Abduction (Hypothesis)

In abduction, an artifact is observed and simultaneously, a hypothesis is offered to explain it.

For example, an anthropologist researching the customs and behaviors of a society..., a geologist in the field working on an evolutionary explanation.

A hypothesis may draw from existing knowledge, or may extend it... e.g. by using analogy.

The 'Aha!' Moment...

In exploratory visualization, the artifact is a visual stimulus.
Inference

Notice that **induction** and **abduction** do not enforce an entirely deterministic structure on a problem.

In direct contrast to deduction, they:

- Can produce **new knowledge**
- Recognize the importance of **learning and refinement**
- Respond to the **individual situation** of a given problem or dataset
- Are not always consistent (Stochastic variation, dependence on prior knowledge and experience).
Doing GIScience...

Data driven

Model / process driven

Exploratory data analysis, data mining

Knowledge construction and learning

Spatial analysis and map algebra

Presentation and evaluation of results

Current GIS

abduction

induction

deduction

Time
3. Tools and techniques that can be used for discovery

Statistical, Computational & Visual
Examples of Spatial Statistical / geographical Tools for Discovery

- **Local Indicators of Spatial Association** (Anselin)
 - Calculates the degree of spatial association at each point or region
 - How much like its neighbors is it? More alike than chance would dictate?

- **Geographically Weighted Regression (GWR)** (Fotheringham, Brunsden)
 - Calculates local regression coefficients according to distance to neighboring observations

- **Geographical Analysis Machine (GAM)** (Openshaw)
 - Brute force search for clusters at multiple scales
GAM: Searching for Clusters: One scale only

James McGill, Stan Openshaw
GAM: Searching for Clusters: Multiple scales

James McGill, Stan Openshaw
Examples of Machine Learning and Data Mining tools for Discovery

Association rules:
- Use joint-count statistics to assess likelihood of occurrence of some pattern A given pattern B.

Unsupervised pattern analysis (AutoClust, AutoClass):
- Use measures of local and global density to form clusters or classes.

Decision trees: (C4.5, RIPPER, BOAT)
- Decision rules are used to carve up feature space
- Search is hierarchical, only 1 dimension at each iteration.
More examples

Feedforward neural networks:
hyperplanes are positioned in feature space.

Genetic algorithms (artificial life):
search by simulating a population of organisms evolving within an environment.

Bayesian networks:
work from a model of concepts provided by the expert, linked via a network of conditional dependencies.
How current tools infer...

Most computational data mining and knowledge discovery tools either attempt to locate pre-defined patterns (using *deduction*) or else learn from examples that are presented or selected (*induction*)...

Others use a weaker form of *abduction*: a pattern is 'discovered' along with an explaining hypothesis, but this hypothesis is defined in terms of the data alone.

So computers can build new descriptions of pre-existing concepts, but not new concepts themselves, or theories that employ them...

...or can build only syntactic description of concepts that need still to be given meaning in human terms.
Why visualize?

- Machines do deduction well, people do not
- Machines do induction well, but only with attributes (and more recently relationships); people use additional types of knowledge (e.g. procedural, tacit)
- It is very difficult to perform computational abduction, it requires the encoding of detailed domain knowledge.
 - "The more realistic the model of abduction required, the less computationally tractable it becomes." (Psillos, 2000)
- We visualize because visualization attempts to connect with the inferential abilities of humans, rather than replace them.
Abduction and Visualization

Visual Display: Computer

Brain: Person
Examples of visually-based tools for discovery (from previous talk)

- Graph-Based
- Iconographic
- Map based
- Metaphorical (faces, landscapes)
Framework for the development and refinement of geospatial knowledge

Implicit knowledge

Explicit knowledge

ACTIVITY
geoscientific activities

Representation
represented objects

Reasoning
primary modes of inference

Data

abduction

Exploration: EXPLORING, DISCOVERING

Map

Concept

Induction

Synthesis: LEARNING, CATEGORIZING

Model

Theory

Deduction

Analysis: GENERALIZING, MODELING

Model-based

Explanation: EVALUATION, TESTING, USING

Presentation: COMMUNICATING, CONSENSUS-BUILDING

Rhetoric

Explanation

Deduction

Model-based

Induction

Synthesis: LEARNING, CATEGORIZING

Model

Data

abduction

Exploration: EXPLORING, DISCOVERING

Map

Concept

Implicit knowledge

Explicit knowledge
Data driven... knowledge driven
Visual... computational

Cluster Detection
(GAM, AUTOCLUST)

Unsupervised classifiers
(AutoClass, SOM)

Scatterplot / PCP Visualization

Visual Data Mining

LISA, GWR

Neural Networks, Decision Trees, Genetic Algorithms

Map-based Visualization

Iconographic Visualization

GeoStatistics (kriging)

Cellular Automata

Visual Scene Composition

Spatial Interaction Models

Bayesian Belief Networks Case-Based Reasoning

Rule-based Expert Systems

Visualization methods

Statistical methods

Computation methods
Knowledge construction: Activities, Tools Representation forms and Reasoning

<table>
<thead>
<tr>
<th>Activity</th>
<th>Visualization</th>
<th>Computation</th>
<th>Representation</th>
<th>Reasoning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploration</td>
<td>PCP, Scatterplot, iconographic displays</td>
<td>SOM, k-means, clustering methods, GAM</td>
<td>Object</td>
<td>Description</td>
</tr>
<tr>
<td>Synthesis</td>
<td>Interactive visual classification, PCP</td>
<td>machine learning, max. likelihood, decision tree</td>
<td>Description</td>
<td>Dataset</td>
</tr>
<tr>
<td>Analysis</td>
<td>Scene composition, visual overlay</td>
<td>Statistical analysis</td>
<td>Concept</td>
<td>Taxonomy</td>
</tr>
<tr>
<td>Explanation</td>
<td>Uncertainty visualization</td>
<td>Statistical testing, M-C simulation</td>
<td>Inference</td>
<td>Explanation</td>
</tr>
<tr>
<td>Presentation</td>
<td>Maps, charts, reports, etc.</td>
<td>Web mapping, digital libraries, collaboratories</td>
<td>Narration</td>
<td>Story</td>
</tr>
</tbody>
</table>

Reasoning Types:
- **Abductive**
- **Inductive**
- **Deductive**
- **Model-based**
- **Rhetorical**
<table>
<thead>
<tr>
<th></th>
<th>Databases</th>
<th>Statistics</th>
<th>A. I.</th>
<th>Visualization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finding</td>
<td>Association rules</td>
<td>Local pattern analysis and global inferential tests</td>
<td>Neural networks, decision trees</td>
<td>Exploratory visualization</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Visual data mining</td>
</tr>
<tr>
<td>Reporting</td>
<td>Rule lists</td>
<td>Significance and power</td>
<td>Likelihood estimation, information gain</td>
<td>A stimulus within the visual domain</td>
</tr>
<tr>
<td>Representing</td>
<td>Schema update, metadata</td>
<td>Fitted statistical models, local or global</td>
<td>Conceptual graphs, meta models</td>
<td>Shared between the scene and the observer</td>
</tr>
<tr>
<td>Validating</td>
<td>Weak significance testing</td>
<td>Significance tests</td>
<td>Learning followed by verification</td>
<td>Human subjects testing.</td>
</tr>
<tr>
<td>Optimizing</td>
<td>Reducing computational complexity</td>
<td>Data reduction and stratified sampling strategies</td>
<td>Stochastic search, gradient ascent methods</td>
<td>Hierarchical and adaptive methods, grand tours</td>
</tr>
</tbody>
</table>

Summary of various approaches...
Problems with discovery

🌟 We need a way of saying what it is we already know...
🌟 We need a mechanism to subtract what we do know from the data—otherwise obvious patterns dominate...
🌟 We need mechanisms to search for the 'peculiarly geographic'?
 👨‍💻 (signatures of geographic processes such as diffusion, clustering, interaction)
🌟 If each display represents a hypothesis (this data, shown that way, might show useful structure) then we are producing a lot of hypotheses to evaluate...
🌟 The hypotheses we produce contain all kinds of implicit biases...
More problems with discovery

The number of ways we could visualize the data is computationally explosive (n data variables mapped to \(v\) visual variables)... we cannot test them all.

Generally speaking, we do not know enough about how different visual variables support or interfere with each other...

We need to be able to specify what our current task is, and hence have the system change its behavior...

Even if we could control for all perceptual effects, users will still understand what they see differently...
BUT
These problems, or similar, pervade data mining and knowledge discovery in general!

All the problems mentioned above are being addressed currently.

The advantage of retaining the user’s expertise remains...Visualization for Intelligence Augmentation (Mixed Initiative Systems).
"Science does not rest upon rock-bottom. The bold structure of theories rises, as it were, above a swamp, but does not go down to any natural or 'given' base; and when we cease our attempts to drive our piles into a deeper layer, it is not because we have reached firm ground. We simply stop when we are satisfied that they are firm enough to carry the structure, at least for the time being."

(Popper, 1959)
Challenges

Discovery is about building a structure that is strong enough to bear the concepts we need for our research, and no stronger.

We do not need to model the world in infinite detail.

The ancient Greek philosophers believed in 'natural categories' by which all things could be classified...

We need to discover new objects, categories, relationships and theories by which we can explain complex geographical systems.

We should resist urges to believe that this structure is 'true' and will last for ever.
Conclusions

Inference is more than *deduction*.

Deduction is good for some classes of problem, but...

Geographical analysis that is entrenched only in deduction will not meet our future needs.

Induction and abduction allow for human experience and the uniqueness of situations to influence outcomes. They also allow new knowledge to be created.

Computational induction is now being used to solve many problems in physical geography, and some in urban and political geography.

Our remaining challenges are to adapt computational tools to better suit geographic settings...

To make them more 'intelligent'...

And to enable abduction via visual (computational?) methods.
The End