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Abstract 

This paper presents an overview of multi-agent system models of land-use/cover change (MAS/LUCC models). This 
special class of LUCC models combines a cellular landscape model with agent-based representations of decision-
making, integrating the two components through specification of interdependencies and feedbacks between agents 
and their environment. The authors review alternative LUCC modeling techniques and discuss the ways in which 
MAS/LUCC models may overcome some important limitations of existing techniques. We briefly review ongoing 
MAS/LUCC modeling efforts in four research areas. We discuss the potential strengths of MAS/LUCC models and 
suggest that these strengths guide researchers in assessing the appropriate choice of model for their particular 
research question. We find that MAS/LUCC models are particularly well suited for representing complex spatial 
interactions under heterogeneous conditions and for modeling decentralized, autonomous decision making. We 
discuss a range of possible roles for MAS/LUCC models, from abstract models designed to derive stylized 
hypotheses to empirically detailed simulation models appropriate for scenario and policy analysis. We also discuss 
the challenge of validation and verification for MAS/LUCC models. Finally, we outline important challenges and 
open research questions in this new field. We conclude that, while significant challenges exist, these models offer a 
promising new tool for researchers whose goal is to create fine-scale models of LUCC phenomena that focus on 
human-environment interactions.  
 

Originally prepared for the Special Workshop on Agent-Based Models of Land Use, October 4-
7, Irvine, California, USA. An earlier version is published as CIPEC working paper CW-01-05. 
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1. Introduction  

Recently, global environmental challenges as well as the development of advanced computer-

based modeling and analysis tools have expanded interest in the use of computational approaches 

to the study of human systems. Researchers are beginning to use these tools to address the 

challenges outlined by Openshaw (1994; 1995)—to develop methodologies within human 

geography that seek computational solutions to problems involving both numeric and symbolic 

data. These new computational tools can be applied to various areas in geography such as 

industrial location, transportation, biogeography, or the study of land-use/cover change (LUCC), 

and may complement existing quantitative and qualitative modeling approaches in human 

geography. This paper focuses specifically on application of these techniques to the study of 

LUCC. 

Land is a dynamic canvas through which human and natural systems interact. Understanding the 

many factors influencing LUCC  has been the focus of scientific study across multiple 

disciplines, locations, and scales. But direct measurements alone are not sufficient to provide an 

understanding of the forces driving change. Linking observations at a range of spatial and 

temporal scales to empirical models provides a comprehensive approach to understanding land-

cover change (Turner et al. 1995). One promising class of models designed to simulate and 

analyze LUCC are multi-agent system models of land-use/cover change (MAS/LUCC models). 

The goal of this paper is to provide a broad overview of the history of these models, offer our 

perspective on their potential role in LUCC modeling, discuss some key issues related to their 

development and implementation, and briefly review ongoing research based on this modeling 

paradigm.  
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MAS/LUCC models combine two key components into an integrated system. The first 

component is a cellular model that represents the landscape over which actors make decisions. 

The second component is an agent-based model that describes the decision-making architecture 

of the key actors in the system under study. These two components are integrated through 

specification of interdependencies and feedbacks between the agents and their environment. This 

approach to the study of systems with many discrete, interacting components that generate 

observable behavior at multiple levels both draws from and facilitates comparisons to broader 

studies in complexity research (Manson 2001). 

All the authors are involved in development of various MAS/LUCC models. During the planning 

and development stages of our projects, we have considered several key questions:  

• What alternative techniques are available for LUCC modeling? What are the potential 

limitations of these techniques? Can MAS/LUCC models overcome some of these 

limitations? 

• What are some ongoing applications of this modeling technique, and why have the 

developers chosen to use the new approach? 

• What are the unique strengths of MAS/LUCC modeling techniques? How can these 

strengths guide researchers in selecting the most appropriate modeling technique for their 

particular research question? 

• What is the appropriate role for MAS/LUCC models? Are these models best used in a 

highly abstract form to demonstrate potential theoretical causes for qualitatively assessed 

real-world phenomena? Alternatively, can they be used to create well-parameterized 

empirical simulations appropriate for scenario and policy analysis? 
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• How can these models be empirically parameterized, verified, and validated? 

• What are some remaining challenges and open questions in this research area? 

By providing answers to these questions, we hope to offer guidance to researchers considering 

the utility of this new modeling approach. We also hope to spark a healthy debate among 

researchers as to the potential advantages, limitations, and major research challenges of 

MAS/LUCC modeling. As MAS modeling studies are being undertaken by geographers in other 

research fields, including transportation, integrated assessment, recreation, and resource 

management, many of the issues raised in this paper may be relevant for other applications as 

well. The remainder of this paper sequentially addresses the questions outlined above. 

2. Approaches to Modeling Land-Use/Cover Change 

This section examines myriad LUCC modeling approaches and offers multi-agent systems 

(MAS) as a means of complementing other techniques. We briefly discuss the strengths and 

weaknesses of seven broad, partly overlapping, categories of models: mathematical equation-

based, system dynamics, statistical, expert system, evolutionary, cellular, and hybrid. This 

review is not exhaustive and only serves to highlight ways in which present techniques are 

complemented by MAS/LUCC models that combine cellular and agent-based models. More 

comprehensive overviews of LUCC modeling techniques focus on tropical 

deforestation (Kaimowitz and Angelsen 1998; Lambin 1994), economic models of land 

use (Plantinga 1999), ecological landscapes (Baker 1989), urban and regional community 

planning (EPA 2000), and LUCC dynamics (Agarwal et al. 2000; Briassoulis 1999; Veldkamp 

and Lambin 2001; Verburg et al. Forthcoming). 
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Equation-Based Models 

Most models are in some way mathematical, but some are especially so in that they rely on 

equations that seek a static or equilibrium solution. The most common mathematical models are 

sets of equations based on theories of population growth and diffusion that specify cumulative 

land-use/cover change over time (Sklar and Costanza 1991). More complex models, often 

grounded in economic theory, employ simultaneous joint equations (Kaimowitz and Angelsen 

1998). A variant of such models is based on linear programming (Howitt 1995; Weinberg, Kling, 

and Wilen 1993), potentially linked to GIS information on land parcels (Chuvieco 1993; 

Cromley and Hanink 1999; Longley, Higgs, and Martin 1994). A major drawback of such 

models is that a numerical or analytical solution to the system of equations must be obtained, 

limiting the level of complexity that may practically be built into such models. Simulation 

models that combine mathematical equations with other data structures are considered below. 

System Models  

System models represent stocks and flows of information, material, or energy as sets of 

differential equations linked through intermediary functions and data structures (Gilbert and 

Troitzsch 1999). Time is broken into discrete steps to allow feedback. Human and ecological 

interactions can be represented within these models, but they are dependent on explicit 

enumeration of causes and functional representation, and they accommodate spatial relationships 

with difficulty (Baker 1989; Sklar and Costanza 1991). 

Statistical Techniques  

Statistical techniques are a common approach to modeling land-use/cover change, given their 

power, wide acceptance, and relative ease of use. They include a variety of regression techniques 

applied to space and more tailored spatial statistical methods (Ludeke, Maggio, and Reid 1990; 
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Mertens and Lambin 1997). Unless they are tied to a theoretical framework, statistical techniques 

may downplay decision making and social phenomena such as institutions. Successful examples 

of combining theory and statistics are provided by spatial econometrics (Chomitz and Gray 

1996; Geoghegan et al. 1998; Geoghegan, Wainger, and Bockstael 1997; Leggett and Bockstael 

2000; Munroe, Southworth, and Tucker 2001).  

Expert Models  

Expert models combine expert judgment with nonfrequentist probability techniques such as 

Bayesian probability or Dempster-Schaefer theory (Eastman 1999) or symbolic artificial 

intelligence approaches such as expert systems and rule-based knowledge systems (Gordon and 

Shortliffe 1984; Lee et al. 1992) . These methods express qualitative knowledge in a quantitative 

fashion that enables the modeler to determine where given land uses are likely to occur. It can be 

difficult to include all aspects of the problem domain, however, which leaves room for gaps and 

inconsistencies. 

Evolutionary Models  

Within the field of artificial intelligence, symbolic approaches such as expert systems are 

complemented by a biologically inspired evolutionary paradigm. Exemplars of this field, such as 

artificial neural networks and evolutionary programming, are finding their way into LUCC 

models (e.g., Balling et al. 1999; Mann and Benwell 1996). In brief, neural networks are silicon 

analogs of neural structure that are trained to associate outcomes with stimuli. Evolutionary 

programming mimics the process of Darwinian evolution by breeding computational programs 

over many generations to create programs that become increasingly able to solve a particular 

problem. 
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Cellular Models 

Cellular models (CM) include cellular automata (CA) and Markov models. Each of these models 

operates over a lattice of congruent cells. In CA, each cell exists in one of a finite set of states, 

and future states depend on transition rules based on a local spatiotemporal neighborhood. The 

system is homogeneous in the sense that the set of possible states is the same for each cell and 

the same transition rule applies to each cell. Time advances in discrete steps, and updates may be 

synchronous or asynchronous (Hegselmann 1998). More general versions of CA use nonlocal 

neighborhoods (Takeyama and Couclelis 1997) and graph networks (O'Sullivan 2001). In 

Markov models, cell states depend probabilistically on temporally lagged cell state values. 

Markov models may be combined with CA for LUCC modeling as evidenced by joint CA-

Markov models (Balzter, Braun, and Kohler 1998; Li and Reynolds 1997). 

Cellular modeling methods underlie many LUCC models. Tobler (1979) was one of the first to 

suggest the use of CM to model geographical processes. This was followed by GIS research that 

applied CM, particularly CA, to a number of research questions (Cecchini and Viola 1990; 

Couclelis 1985). Sophisticated CA models of ecological processes exist for rangeland dynamics 

(Li and Reynolds 1997), species composition (Silvertown et al. 1992), forest succession (Alonso 

and Sole 2000; Hogeweg 1988), global land-use/cover change in response to climate change 

(Alcamo 1994), and a host of other biological phenomena (Ermentrout and Edelstein-Keshet 

1993; Gronewold and Sonnenschein 1998). 

Many CM inductively assume that the actions of human agents are important, but do not 

expressly model decisions. Others explicitly posit a set of agents coincident with lattice cells and 

use transition rules as proxies to decision making. These efforts succeed when the unit of 

analysis is tessellated, decision-making strategies are fixed, and heterogeneous actors are 
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affected by local neighbors in a simple, well-defined manner. A good example is modeling 

residential choice and land use in urban areas, where actors are assumed, for analytical 

simplicity, to be evenly arrayed, such as in homes, and their decision making stems from 

interactions with immediate neighbors (Hegselmann 1998; Schelling 1971). Other work loosens 

the tessellation of actors to make more realistic models (Benenson 1998; Portugali, Benenson, 

and Omer 1997). 

When actors are not tied to location in the intrinsic manner of CA cells, however, there may be a 

problem of spatial orientedness (Hogeweg 1988), the extent to which neighborhood relationships 

do not reflect actual spatial relationships. Remedy lies in techniques that have nonuniform 

transition rules and can dynamically change the strength and configuration of connections 

between cells. As these characteristics lie beyond the capacities of rigidly defined CA, the pure, 

traditional CA method may not be broadly suited to model land-use/cover change. A LUCC 

model may require multiple mobile agents ranging widely over space, agent heterogeneity, 

agents organized among institutions and social networks, or agents that control large and varying 

portions of space. 

In sum, cellular models have proven utility for modeling ecological aspects of land-use/cover 

change, but they face challenges when incorporating human decision making. It is necessary to 

use complex hierarchical rule sets to differentiate between the kinds of decision making that 

apply to groups of cells, such as local land tenure structure (e.g., Li 2000; White and Engelen 

2000). While effective, these deviations from generic cellular automata come at the potential cost 

of moving away from the advantages of the generic approach. In particular, “in order to converse 

with other disciplines, from biology and physics to chemistry, it may be necessary that the form 
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of . . . CA preserve as many features of strict and formal CA models as possible” (Torrens and 

O'Sullivan 2001, p. 165).  

Hybrid Models  

Hybrid models combine any of the above-mentioned techniques, each of which is a fairly 

discrete approach unto itself. A prime example is estuarine land-use/cover transition modeling 

that has an explicit, cellular model tied to a system dynamics model (Costanza, Sklar, and Day 

1986). Another similar combination is DELTA, which integrates submodels of human 

colonization and ecological interactions to estimate deforestation under different immigration 

and land management scenarios (Southworth, Dale, and O'Neill 1991). Other examples that 

combine statistical techniques with cellular models and system models include larger-scale 

models such as GEOMOD2 (Hall et al. 1995), the CLUE family (Veldkamp and Fresco 1996), 

and endangered species models developed at the Geographic Modeling Systems Lab at the 

University of Illinois (Trame et al. 1997; Westervelt et al. 1997). 

A distinct variant of hybrid models is dynamic spatial simulation (DSS), which portrays the 

landscape as a two-dimensional grid where rules represent the actions of land managers based on 

factors such as agricultural suitability (Gilruth, Marsh, and Itami 1995; Lambin 1994). Dynamic 

spatial simulation typically does not represent heterogeneous actors, institutional effects on 

decision making, or multiple production activities. However, due to their ability to represent 

individual decision making and temporal and spatial dynamics, they represent an important 

advance over previous models (Lambin 1994). The orientation toward individual decision 

making in DSS—that some form of land managers act over a landscape—is shared by agent-

based models. Thus, these models are logical precursors to MAS/LUCC. 
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Agent-Based Models  

Where cellular models are focused on landscapes and transitions, agent-based models focus on 

human actions. Agents are the crucial component in these models. Several characteristics define 

agents: they are autonomous, they share an environment through agent communication and 

interaction, and they make decisions that tie behavior to the environment. Agents have been used 

to represent a wide variety of entities, including atoms, biological cells, animals, people, and 

organizations (Conte, Hegselmann, and Terna 1997; Epstein and Axtell 1996; Janssen and Jager 

2000; Liebrand, Nowak, and Hegselmann 1988; Weiss 1999). 

Autonomy means that agents have control over their actions and internal state in order to achieve 

goals. Woolridge (1999) defines intelligent agents as being able to act with flexibility, which 

implies that agents are goal-directed and capable of interaction with other agents and a common 

environment, meant in a wide sense as anything outside of the agents. In a LUCC context, a 

shared landscape where the actions of one agent can affect those of others is likely to be the 

unifying environment. A land market is another example of an important environment through 

which agents interact.  

Agents must act according to some model of cognition that links their autonomous goals to the 

environment through their behavior. The term cognition ranges in applicability to relatively 

simple stimulus-response decision making to the point where actors are proactive, take initiative, 

and have larger intentions. At a minimum, an autonomous agent needs strategies that allow it to 

react to changes in environment, given the importance of the environment to goals and actions. 

Reaction can be scripted and still be considered a cognitive model in a narrow sense as long as 

the agent can respond to changes (Russell and Norvig 1995). Beyond pure reaction, some of the 

most well-developed formal models of human decision making are based on rational choice 
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theory. These models generally assume that actors are perfectly rational optimizers with 

unfettered access to information, foresight, and infinite analytical ability. These agents are 

therefore capable of deductively solving complex mathematical optimization problems in order 

to maximize their well-being and can balance long-run vs. short-run payoffs even in the face of 

uncertainty. While rational choice models can have substantial explanatory power, some of the 

axiomatic foundations of rational choice are contradicted by experimental evidence, leading 

prominent social scientists to question the empirical validity of rational choice theory (Selten 

2001). 

It is an open question whether models of perfect rationality are appropriate for agent-based 

models applied to land-use/cover change, given the importance of spatial interdependencies and 

feedbacks in these systems. For instance, if the value of an action to every perfectly rational 

agent depends on both her actions and those of her neighbors, then she faces a high-dimensional, 

fully recursive programming problem if she strategically seeks to anticipate the actions of her 

neighbors. Recognition of the complex environment in which human decision making occurs has 

resulted in a movement toward agent-based models that employ some variant of bounded 

rationality (Gigerenzer and Todd 1999; Simon 1997). In general, boundedly rational agents have 

goals that relate their actions to the environment. Rather than implementing an optimal solution 

that fully anticipates all future states of the system of which they are part, they make inductive, 

discrete, and evolving choices that move them toward achieving goals (Bower and Bunn 2000; 

Rabin 1998; Tversky and Kahneman 1990). 

Good examples of decision-making models are found in the emerging field of agent-based 

computational economics, where these approaches have been applied to financial markets, 

macroeconomics, innovation, environmental management, and labor economics (Tesfatsion 
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2001). Boundedly rational forms of decision making have been modeled using genetic 

algorithms (Arifovic 1994; Arifovic 2001; Beckenbach 1999; Chen and Yeh 2001; Dawid 1999; 

Miller 1996), heuristics (Arthur 1993, 1994a; Gigerenzer and Selten 2001; Gigerenzer and Todd 

1999), simulated annealing (Kollman, Miller, and Page 1997), classifier systems (Holland 1990), 

and reinforcement learning (Bower and Bunn 2000; Duffy 2001; Kirman and Vriend 2001). 

Before continuing, it is important to address one key difference between agent-based modeling 

and other techniques. The discussion of systems models, cellular models, and agent-based 

models leads naturally to the question of the relationship between general systems theory, agent-

based modeling, and complexity theory (Phelan 1999). During the heyday of general systems 

theory, on which systems models are partially based, some researchers found the theory useful 

for modeling environmental systems (Bennett and Chorley 1978) while others found it wanting 

(Chisholm 1967). Complexity research differs from general systems theory in several respects 

(Manson 2001). Complex systems are often characterized by nonlinear relationships between 

constantly changing entities while systems theory typically studies static entities linked by linear 

relationships defined by flows and stocks of energy, information, or matter. Similarly, systems 

theory emphasizes quantities of flow and not necessarily their quality, while complexity research 

attempts to examine qualitative attributes such as learning and communication. As discussed 

below, complex behavior is seen as emerging from interactions between system components 

while system models tend to favor parameterized flows and stocks that assume that the system 

exists in equilibrium due to fixed relationships between system elements. Agent-based modeling 

relies on the idea that emergent or synergistic characteristics are understood by examining sub-

component relationships. Finally, complexity research takes advantage of the increasing 

sophistication of computer simulation tools that allow exploratory simulation (Conte and Gilbert 
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1995). Silicon-based simulation allows exploration of system outcomes that are not preordained 

and deterministic (Thrift 1999). 

Multi-Agent Systems for Land-Use/Cover Change  

The exploration of modeling thus far has raised three key points that are explored by the 

remainder of this paper. First, of the host of methods used to model land-use/cover change, 

dynamic spatial simulation offers a promising degree of flexibility. Second, as noted above, 

cellular models successfully replicate aspects of ecological and biogeophysical phenomena, but 

they may not always be suited to modeling decision making. Third, as explored more fully 

below, agent-based modeling is a promising means of representing disaggregated decision 

making. When all three points are taken together, they suggest the use of a dynamic, spatial 

simulation-like MAS/LUCC model that consists of two components. The first is a cellular model 

that represents biogeophysical and ecological aspects of a modeled system. The second is an 

agent-based model to represent human decision making. The cellular model is part of the agents’ 

environment, and the agents in turn act on the simulated environment. In this manner, the 

complex interactions among agents and between agents and their environment can be simulated 

in a manner that assumes equilibrium conditions. Rather, equilibria or transient but reoccurring 

patterns emerge through the simulated interactions between agents and their environment. The 

following sections highlight the advantages of this combination for modeling land-use/cover 

change and a number of existing examples. 

3. Current Applications of MAS/LUCC Modeling 

In this section, we briefly discuss recent studies that apply multi-agent systems to study land-

use/cover change for practical cases. We do not intend to provide a complete review of all 
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possible studies, since this field is newly emerging and a detailed review would be quickly 

outdated. We discuss why researchers have chosen to use MAS/LUCC models in four 

overlapping topic areas: natural resource management, agricultural economics, archaeology, and 

urban simulations. In Table 1, we list a number of published studies which demonstrate the broad 

range of applications. For more details, we refer to recent overviews by Kohler (2000), Gimblett 

(2001), Janssen (Forthcoming), and Parker, Berger, and Manson (Forthcoming) that incorporate 

work on MAS/LUCC models.  
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Table 1. Characteristics of a Number of Land-Use/Cover Change Studies That Use the Combination of Agents and Cellular Models 
Publication(s) Type(s) of 

Land Use 
Issue Time Period Type(s) of Agents Type(s) of Decisions Geographic Location 

Balmann (1997), 
Balmann et al. 
(Forthcoming) 

Agriculture Diffusion of new practices 2001–2020 Farms Investment, production, land 
renting 

Hohenlohe, Germany 

Berger (2001) Agriculture Diffusion of new practices 1997–2015 Farm-households Investment, tenure, 
production 

Chile 

Rouchier et al (2001) Rangelands 
 

Emergent relationships 
between farmers and 
herdsmen 

400 units of 
time 

Herdsmen, farmers 
and village leader 

Negotiations on location for 
herding, selling animals 

North Cameroon 

Dean et al. (2000) Settlements Societal collapse 800–1360 Households Location to farm, harvest, 
store harvest, marriage 

Long House Valley, 
Arizona, USA 

Hoffmann et al. 
(Forthcoming) 

Forests, 
agriculture 

Trends in deforestation and 
reforestation 

1850–present Landowners Farm, fallow, harvest timber Indiana, USA 

Kohler et al. (2000) Settlements Settlement pattern 900–1300 Households Agricultural production 
decisions, marriage, choice of 
new residential location 

Mesa Verde Region, USA 

Ligtenberg et al. (2001) Urban Modeling spatial planning 30 years Stakeholders Voting for preferred land use Nijmegen, the Netherlands 
Lim et al. (2001) Forests Trends in tropical 

deforestation 
1961–present Farmers Cropping decisions Brazilian Amazon 

Lynam (Forthcoming) Savanna Examine sustainability of 
agricultural practices 

30 years Households Cropping decisions Kanyurira Ward, 
Zimbabwe 

Manson (2000; 
Forthcoming)  

Forests, 
agriculture 

Trends in tropical 
cultivation and 
deforestation  
 

1960–2010 
 

Households, 
institutions  
 

Crop/land allocation Yucatán Peninsula, 
Mexico. 

Polhill et al. (2001) Not specified Study of imitation 
strategies 

200 years Land managers Land-use decisions and land 
market 

No specific location 

Rajan and Shibasaki 
(2000) 

Forests, 
agriculture, 
urban 

Land-use/cover change at 
the national level 

1980–1990 Decision maker on 
spatial grid 

Land use and migration Thailand 

Sanders et al. (1997) Urban Evolution of settlements 2000 years Spatial entity Transition rules for settlement 
type change 

No specific location 

Torrens (2001) Urban Residential location 
dynamics 

Not specified Home sellers and 
home buyers 

When to sell and buy No specific location 
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Natural Resource Management 

Within the field of natural resource management there is substantial interest in using MAS 

models to understand common-pool resource problems. The question of interest is what type of 

institutional rules may direct individuals to act in the benefit of the collective. Bousquet and 

colleagues (1998) have developed a number of models in which collective choice models 

influence land-use/cover change. For example, Rouchier et al. (2001) study how herdsmen 

search for suitable grazing locations in the dry season and negotiate with farmers for the use of 

their land. Depending on the criteria by which the herdsmen pursue access to rangelands, 

different carrying capacities for cattle result, although the physical characteristics of the system 

are held constant. Decisions based on cost differentials lead, in the long term, to lower numbers 

of cattle, while decisions which take into account the history of interactions lead to a higher 

carrying capacity. 

Agricultural Economics  

Several agricultural economists have performed studies on how new agricultural practices are 

adopted by a population of farmers in an agricultural region (Balmann 1997; Balmann et al. 

Forthcoming; Berger 2001; Polhill, Gotts, and Law 2001). Such an adoption process is typically 

bottom-up, since landowners vary in their preferences and abilities to adopt technological 

innovations, land quality and availability are spatially heterogeneous, and information on new 

practices spreads via social interactions of agents. These scholars have developed simulations 

which include farmers’ investment decisions in new technologies, land markets, and crop choice 

decisions. The resulting models can be used to assess the impacts of various governmental 

policies on the adoption of new agricultural practices and the structure of the farm economy.  
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Archaeology 

Archaeologists are not able to perform repeated, controlled experiments. Therefore, since the 

early 1970s, archaeologists have used models to test possible explanations for observed 

phenomena, basing their modeling on the limited information available from the past. These 

models have focused mainly on how complex societies have emerged and collapsed. 

Archeologists are now beginning to use MAS/LUCC as a means of incorporating spatial 

information into their models. 

Dean et al. (2000) study the cause of the collapse of the Anasazi around 1300 in Arizona, USA. 

Scholars have argued for both a social and an environmental cause (drought) for the collapse of 

this society. Simulating individual decisions of households on a very detailed landscape of 

physical conditions of the local environment, the authors refute the hypothesis that 

environmental factors alone account for the collapse. Kohler et al. (2000) study the reasons why 

there have been periods when Pueblo people lived in compact villages, while in other times they 

lived in dispersed hamlets. These model results show the importance of environmental factors 

related to water availability for these settlement changes. 

Urban Simulation 

Torrens (2002) discusses drawbacks of traditional spatial interaction and discrete choice models 

of urban landscapes, and argues that these drawbacks provide motivation for scholars of urban 

studies to undertake multi-agent simulations. Drawbacks of traditional models include poor 

representation of dynamics in urban simulations and poor handling of details in spatial and 

socioeconomic representations. He also argues that the top-down approach in traditional urban 

models conflicts with the bottom-up perspective of complex systems. 
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Torrens argues that a new wave of urban models provides a detailed, decentralized, and dynamic 

view of urban systems. While most are based on cellular automata, a few MAS and CA-MAS 

oriented models are being developed. CA models have been used for assessing the role of density 

constraints in land development (Batty, Xie, and Sun 1999), describing the evolution of urban 

forms (Clarke, Hoppen, and Gaydos 1997; Wu 1998), and simulating land-use transitions (White 

and Engelen 1997). Torrens (2001) himself combines CA and MAS models in an exploratory 

study. 

4. Why use MAS/LUCC models? 

 As discussed above, many well-developed techniques for modeling land-use/cover dynamics 

exist. However, each of these techniques has some limitations. Equation-based models may 

require simplifying assumptions to achieve analytical or computational tractability, and they are 

often based on empirically implausible assumptions regarding static market equilibria. System 

models directly address the shortcomings of equation-based models in terms of representing 

feedbacks and dynamic processes, but these models also operate at a very aggregated level, or, 

equivalently, at a very coarse temporal and spatial resolution. Therefore, where local 

heterogeneity and interactions are important, such models may have limited explanatory power. 

Some insight into the impacts of spatial heterogeneity, neighborhood effects, and spatial 

spillovers can be gleaned through estimation of statistical models. However, these models distill 

information into parameter estimates that represent average effects over available data. Thus, 

such models may be useful for projecting spatial dynamics and interactions only for processes 

which are stationary and uniform over space and time. While the impacts of spatial influences 

occurring at hierarchical spatial scales can be represented to some extent through statistical 
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techniques that account for regional heterogeneity (such as generalized least-squares, fixed-

effect, and random-effect models), feedbacks across scales cannot be effectively modeled. While 

cellular modeling techniques offer greater flexibility for representing spatial and temporal 

dynamics, these dynamics also are based on stationary transition probabilities. Therefore, such 

models have limited ability to reflect feedbacks in the system under study, as global changes in 

the system do not influence transitions at the cellular level. Perhaps most significant, none of the 

above modeling techniques can represent the impacts of autonomous, heterogeneous, and 

decentralized human decision making on the landscape.  

Many of these limitations are potentially overcome by MAS/LUCC models. In particular, 

MAS/LUCC models may be well suited for representing socioeconomic and biophysical 

complexity. They also might be well suited for the related goal of modeling interactions and 

feedbacks between socioeconomic and biophysical environments. In the following section, we 

offer our perspective on the general strengths of MAS/LUCC models. This discussion may guide 

researchers in selecting the modeling framework most appropriate for their particular research. 

MAS/LUCC Models as a Simulated Social Laboratory 

Perhaps the greatest general advantage of MAS/LUCC models is their flexibility. Because the 

models need not be solved for closed-form analytical equilibrium solutions, details critical to the 

system under study can be built in. These details may include endogeneity related to agent 

decision making and disaggregated spatial relationships. These models can then serve as a social 

laboratory, as suggested by Casti (1999) in which to explore links between land-use behaviors 

and landscape outcomes. Once the mechanisms of the model are programmed, researchers have 

greater flexibility to design and execute experiments to explore alternative causal mechanisms 

than they would if a solution to a set of equilibrium conditions were required.  
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Representing Complexity 

The flexibility possible within MAS/LUCC models means that such models can be designed to 

represent complex land-use and land-cover systems. While no precise definition of a complex 

system exists (Auyang 1998; Batty and Torrens 2001; Ziemelis and Allen 2001), complex 

systems are generally discussed as dynamic systems that exhibit recognizable patterns of 

organization across spatial and temporal scales. Complex systems are often defined in terms of 

the strength of dynamic linkages between components. Systems with very strong dynamic 

linkages may immediately move to and remain at a stable equilibrium. Systems with weak 

dynamic linkages are often chaotic, and changes in the system due to small perturbation are large 

and often difficult to track. In contrast, systems with moderate linkages between components 

may exhibit transient but recurrent patterns of organization. Such complex systems are often said 

to reside at the edge of chaos (Waldrop 1992). 

Structurally, complex systems are characterized by interdependencies, heterogeneity, and nested 

hierarchies among agents and their environment (Arthur, Durlaf, and Lane 1997; Epstein 1999; 

Holland 1998; Kohler 2000; LeBaron 2001; Manson 2001). Many examples of these three key 

sources of complexity can be identified in human-influenced landscapes. Complexity arises from 

both human decision making and the explicitly spatial aspects of the landscape environment.  

 Interdependencies exist among agents, between agents and their biophysical environment, 

across time, and across space. Agents may rely on information from past decisions—their own 

and those of other agents—to update decision-making strategies. This process leads to temporal 

interdependencies among agents. Agent decisions likely will have temporally dynamic impacts 

on the biophysical environment, including impacts on soil health, biodiversity, and the type and 

succession of vegetation cover. Brander and Taylor (1998) and Sanchirico and Wilen (1999) 
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present examples of bioeconomic models that incorporate ecological interdependencies. If each 

agent’s behavior potentially impacts other agents’ decisions uniformly, and agents’ actions are 

not spatially linked, these dynamics potentially could be modeled in an aspatial context.  

However, many spatial interdependencies potentially impact individual decision making. These 

include spatial influences on agent behavior, such as flows of information, diffusion of 

technology, spatial competition, local coordination, social networks, and positive and negative 

externalities among neighbors (see Case 1991, 1992; Irwin and Bockstael 2002; Krider and 

Weinberg 1997; Lansing and Kremer 1993; Miyao and Kanemoto 1987; Parker 2000; Ray and 

Williams 1999). Many biophysical spatial interdependencies also are potentially important, such 

as downstream watershed impacts, habitat connectivity, metapopulation dynamics, and 

ecological edge effects. Furthermore, biophysical and social processes interact at a spatially 

explicit level. For example, residential development patterns may impact surface runoff and 

thereby lead to changes in hydrologic networks. Alternatively, local changes in ecological 

conditions may drive human migration.  

Heterogeneity may also be present across agents, the biophysical environment, space, and time. 

Agents may vary according to experience, values, ability, and resources. This heterogeneity may 

change over time due to agent learning and demographic changes. Biophysical heterogeneity 

also can drive changes in land-use decisions and the resulting land cover. Differences in soil 

quality, topography, vegetation, water quality, and water availability all influence the relative 

success of various land-use choices.  

While models with substantial heterogeneity may be analytically tractable, when heterogeneity 

and interdependencies are combined, analytical solutions become very difficult to obtain. 
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Assumptions of agent homogeneity are commonly invoked to obtain analytical tractability. 

When agent heterogeneity is a critical driver of model outcomes, assumptions of homogeneity 

are not appropriate. Technology adoption is a simple example in which both agent heterogeneity 

and spatial interdependencies are important. The benefits of a new technology are often 

uncertain. Therefore, an agent with greater access to resources to ensure a subsistence level of 

consumption (such as stored wealth or access to credit) may be more willing to risk adoption of a 

new technology. The success or failure of the new technology will provide information about the 

payoffs from the technology to other agents, potentially reducing uncertainty. If information 

diffuses spatially, risk-averse neighbors of the early adopter may now adopt the technology. 

Further, the distribution of agent types over space may impact the spatial extent of adoption. 

Thus regions of adoption and nonadoption may emerge as a result of local agent heterogeneity 

and spatial interdependencies between agents.  

In models of complex systems, interdependencies and heterogeneity often lead to what are called 

nonconvexities–an irregular and rugged abstract surface describing the relationship between the 

parameters of the system and possible outcome states. In systems with such mathematical 

properties, many possible stable equilibria can exist (Bond and Gasser 1988; Burrows 1986). For 

many systems, the particular equilibrium that a system reaches depends on the initial conditions 

of the model. Such systems are said to exhibit path dependency (Arthur 1988; Arthur 1994b). A 

simple extension of the previous technology adoption example illustrates this concept. The 

presence of a single agent willing to take risks may be required to instigate a cascade of 

technology adoption. The system therefore has two equilibria, one with adoption and one 

without, and initial condition of the distribution of risk preferences among agents may determine 

whether the technology is in fact adopted in a local region.  
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In addition to heterogeneity and interdependencies, both social and biophysical systems are 

characterized by hierarchical, nested structures. For example, family members interact to form a 

household, which may interact with other households in a village through political and economic 

institutions. City governments collectively influence and are influenced by county and regional 

governments, which in turn interact at a national level. On the biophysical side, individual 

waterways join to define nested watersheds, and populations, formed of individual species 

members, aggregate to form communities which in turn collectively define ecosystems. These 

nestings imply that an individual agent or parcel is likely influenced by, and in turn influences, 

processes occurring at multiple spatial scales. These spatial complexities are very difficult to 

model in a purely analytical or statistical framework. Further, they may complicate the situation 

of multiple equilibria and path dependence discussed above, as feedbacks within the system may 

change the shape of the outcome surface, rendering previously stable equilibria unstable 

(Kauffman 1994). Returning to the example of technology adoption, regional policies that offer 

inducements for adoption may influence the decisions of individual landowners (a downward 

linkage). The subsequent development of a critical mass of adopters may then lead to the 

creation of a formal market for the good produced using the new technology (an upward 

linkage). 

Adaptation 

Complex systems are often described as being adaptive. Adaptive mechanisms may influence 

outcomes at both micro- and macroscales. At the level of an individual agent, learning behavior 

and the evolution of strategies may be built into the decision-making structure. At the system 

level, the aggregate population evolution may be influenced by the birth, death, migration, and 

bankruptcy of agents (Berger 2001; Epstein and Axtell 1996; Kohler et al. 2000). Finally, rules 
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and institutions may evolve over time in response to changing social and environmental 

conditions (Janssen and Ostrom Forthcoming; Lansing and Kremer 1993). 

Modeling Emergence 

If researchers are specifically interested in modeling the complex dynamics of a LUCC system, 

they also may be specifically interested in understanding the macroscopic, or emergent, 

phenomena that could result. While emergence has become a popular buzz word in discussions 

of complexity, there are numerous concrete manifestations of the concept, many of which are 

potentially useful foci for empirical researchers. However, it is important to acknowledge that a 

widely accepted formal mathematical definition of emergence has not been established, and the 

topic remains a point of lively debate among modelers. Below, we briefly summarize the diverse 

ways emergence has been defined in the literature and discuss the relevance of the concept for 

MAS/LUCC modeling. 

Emergent phenomena are described as aggregate outcomes that cannot be predicted by 

examining the elements of the system in isolation. This description is often summarized as a 

whole that is greater than the sum of its parts. Holland (1998) describes emergence simply as 

much coming from little. Epstein and Axtell suggest that emergence is characterized by 

“organization into recognizable macroscopic social patterns” (1996, p. 6). Baas and Emmeche 

(1997) explicitly identify emergence as a function of synergism, whereby system-wide 

characteristics do not result from the additive effects of system components (superposition) but 

instead from interactions among components. Auyang (1998) similarly defines emergent 

phenomena as higher-level structures that are both qualitatively different from their lower-level 

components and not obtainable through aggregation, averaging, or other superposition of 

microlevel components. 
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Definitions of emergence usually concern macroscale phenomena that arise from 

microinteraction. Therefore, the concept of emergence is directly related to the phenomenon of 

nested hierarchies that characterize complex systems. Emergent phenomena at one level 

potentially define the units of interaction at the next higher level. However, the macrostructure 

potentially also affects units at the microscale. Castelfranchi (1998), for example, discusses how 

emergent networks of dependence between agents’ decisions constrain and influence agents’ 

subsequent actions. There are definitions of emergence that necessitate that lower-level elements 

remain unaware of their role in emergent phenomena (Forrest 1991). MAS models based on such 

principles may fail to capture reality if they do not allow reflexivity or model individuals who 

reason about features of which they are part. Conversely, MAS models are sufficiently flexible to 

capture both upward and downward linkages, and may therefore be a useful tool for exploring 

such linkages. Emergent structures may change form in response to exogenous shocks or a key 

state of the system reaching a level of critical mass. This restoration of discernible structure in 

response to system perturbations represents an outcome-oriented interpretation of adaptation. 

Some definitions specifically associate emergence with surprise or novelty (Batty and Torrens 

2001). The concept of surprise is potentially consistent with the concept of an emergent property 

as one that could not be predicted by examining the components of the system in isolation. 

However, definition in terms of the fundamentally subjective concept of surprise is potentially 

problematic. If a phenomenon must be surprising, how can it be replicable? Is it then not 

emergent upon reobservation? Auyang (1998) specifically rejects the concept of surprise as a 

defining characteristic of emergence, but provides a helpful discussion of the relationship 

between novelty and emergence. The concept of surprise, though, may provide a counterfactual 



 
27

way of defining emergence: a pattern whose appearance is an obvious consequence of the 

properties of the underlying components may not be regarded as emergent.  

Various authors identify many concrete examples of emergence. For example, both market-

clearing price and the aggregate distribution of economic activity have been identified as 

emergent properties of economic systems (Epstein and Axtell 1996). Location models have 

focused on spatial segregation and patterns of settlement and migration as emergent properties of 

spatially explicit complex systems (Kohler et al. 2000; Schelling 1978). Patterns of land use also 

have been identified as emergent properties of land markets (Parker, Evans, and Meretsky 2001; 

White and Engelen 1993, 1994). The distribution of farm sizes had been identified as an 

emergent property of agricultural land markets (Balmann 1997; Berger 2001). In each of these 

examples, the macroscopic outcome depends on interactions between agents, as well as 

individual agent characteristics. 

If researchers assume that modeled systems reach their theoretical equilibria, some of these 

macroscale phenomena can be derived from a set of equilibrium conditions, given a set of 

assumptions about agent interactions that are not explicitly modeled. For example, in the classic 

economic model of a purely competitive economy, a market-clearing price can be derived from a 

set of equilibrium conditions that hold under certain restrictive assumptions (Laffont 1988). If 

these phenomena can be modeled using simple analytical techniques, why would a more 

complicated technique be justified? There are two answers to this question. First, the analytical 

techniques, by relying on simplifying assumptions regarding agent interactions, heterogeneity, 

and hierarchical structures, may predict outcomes that hold only as special cases. Second, in 

many cases, a set of equilibrium conditions that define the emergent outcome cannot be 

analytically solved, or cannot be solved for a unique equilibrium. This second answer holds often 
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for spatial problems. Analytical spatial equilibrium models are very difficult to construct in cases 

where the relationship of each neighbor to every other neighbor must be modeled. Even if 

impacts are limited to a local neighborhood, these models quickly become intractable. Thus, an 

emergent phenomenon such as landscape pattern may be practically modeled with only 

computational tools such as MAS models.  

Modeling Dynamic Paths 

Many temporally dynamic analytical models are solved only for a steady state (a dynamic 

equilibrium in which the rate of change of system components is zero). A very long time horizon 

may be required for the model to reach a steady state. Realistically, however, steady states are 

highly dependent on parameter values that are not stable over time, and thus theoretical steady 

states may not be a reasonable modeling target. Further, policy makers may be most interested in 

short-run changes in the system under study. Therefore, analysis of the dynamic path (or paths) 

of the system may be of more relevance than information about a theoretical long-run 

equilibrium. When spatial heterogeneity impacts path-dependent outcomes, policy makers may 

be interested in differential impacts on local stakeholders. MAS models can be used to analyze 

the path of the system within any time frame. Further, parameter values can be perturbed to 

examine how the path of the system changes in response to exogenous shocks.  

Participatory Models 

Oreskes, Shrader-Frechette, and Belitz claim that, “fundamentally, the reason for modeling is a 

lack of full access, either in time or space, to the phenomena of interest” (1994, p. 644). Such a 

lack of access is endemic in many LUCC-relevant policy areas. Participatory approaches to 

model development and implementation offer promise as a means to increase the utility of 

simulation models by closely tailoring the model and subsequent analysis to the needs of 
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stakeholders. Participatory approaches have been applied to problems in geography, ecology, and 

natural resource management (Craig, Harris, and Weiner 2002; Grimble and Wellard 1997; Luz 

2000; Steins and Edwards 1999). Such participatory models vary from heuristic models that give 

policy makers and stakeholders a voice in model development and a feel for the general 

dynamics of a system to detailed models designed to mimic actual systems and provide potential 

futures. MAS models are potentially useful for active/interactive policy-testing and learning in 

resource management areas precisely because the MAS approaches can model both decision-

making and social-physical-biological processes. The visual communication provided by 

spatially explicit cellular models, particularly those coupled with GIS, can assist in 

communicating model results to a wide range to stakeholders and policy makers. Finally, the 

flexibility of representation and implementation inherent in MAS/LUCC models makes them 

well suited to interactive scenario analysis. 

Three general types of participatory models, distinguished by the level of participation, are 

prevalent in the literature. One type is explicitly concerned with participation at all stages of 

model development (Bousquet et al. Forthcoming; Hare et al. 2002; Lynam et al. 2002). 

Stakeholders and modelers work together to build MAS models of systems in question, and the 

model-building as well as model-running exercises facilitate learning about the interactions and 

dynamics in the system being addressed. With the second type of participatory model, 

stakeholder participation is not necessarily incorporated into model building, but stakeholders 

participate in the model running, acting as agents in the model (Barreteau, Bousquet, and 

Attonaty 2001; Gilbert, Maltby, and Asakawa 2002). In this type of model, stakeholders play the 

game by interacting with artificial agents in a MAS model in order to learn more about the 

system at hand. Finally, and most commonly, MAS models are designed to be presented to 
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policy makers as a fully functioning scenario-analysis tool (Antona et al. 2002; Ligtenberg et al. 

2002; Rajan and Shibasaki 2000). With this type of model, stakeholders can alter variables and 

parameters of models that are either heuristic or closely mimic real systems in order to test policy 

alternatives. 

In summary, MAS models are likely to be a useful tool for theoretical exploration and 

development of hypotheses when complex phenomena have an important influence on model 

outcomes. MAS models may be particularly appropriate when important interdependencies 

between agents and their environment are present, when heterogeneity of agents and/or their 

environment critically impact model outcomes, when upward and downward linkages among 

hierarchical structures of organization exist, and when adaptive behaviors at the individual or 

system level are relevant for the system under study. They are also potentially useful for 

examining the path of a system in cases where the time scale to reach equilibrium is beyond the 

time frame of interest to the researcher. Finally, these may be well suited for development and 

implementation of participatory models designed to assist decision making in complex 

circumstances. In cases where these complexities are not present, simpler and more transparent 

modeling techniques may be appropriate.  

5. Potential Roles of MAS/LUCC Models 

 The numerous, diverse applications and noted advantages of MAS/LUCC notwithstanding, a 

series of questions for modelers remains. What kind of science are we practicing when we use 

MAS models? What, if anything, do the results of our models tell us? What role does our 

simulation play in our investigations? In light of the observation that “in every case of simulating 

complex adaptive systems, the emergent properties are strictly dependent on the ‘rules’ 
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preprogrammed by the investigator” (Fogel, Chellapilla, and Angeline 1999, p. 146), how much 

can we learn with this method? The answers to these questions are far from clear. Indeed, recent 

commentaries caution modelers to take care with the claims they make about their models and to 

reflect on the utility of them as a tool for exploring empirical phenomena (Casti 1997; Oreskes, 

Shrader-Frechette, and Belitz 1994).  

Beyond a common goal of understanding something about the world by creating simulations, 

there are multiple ways to conceive the utility of the modeling enterprise. While MAS/LUCC 

models appear to be useful tools, it is imperative that we consider the kinds of information and 

knowledge that we can potentially extract from them. This is not a trivial task, because MAS 

models do not easily fit into the classic deductive/inductive categories familiar to scientists. 

Consistent with deduction, a MAS modeler begins with a set of assumptions regarding agent 

behaviors and interactions, but in contrast to classical deduction, the modeler cannot prove the 

results using formal mathematics or logic. Instead, the modeler may generate data in different 

simulation experiments that are then analyzed with inductive methods similar to those employed 

for analysis of empirical data. In contrast to pure induction, however, one does not work with 

real-world data. Judd (1997) discusses ways in which computational methods can be useful for 

theoretical analysis, even when such methods do not meet the theorem/proof criteria for pure 

deduction. Axelrod (1997b) concurs that simulation is neither purely deductive nor inductive, 

and alternatively characterizes it as a third way of doing science. Thus, it is not immediately 

clear what role this new scientific approach should play in our analysis of LUCC issues. 

In sorting out roles for MAS/LUCC models we turn to an interesting distinction Casti (1997) has 

drawn between models that relies on the analogy of the difference between a photographic 

portrait and a Picasso portrait. One attempts to mimic reality and the other, while capturing parts 
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of reality, focuses in on particular aspects in the hopes of emphasizing fundamental features. 

This is a useful metaphor for discussing the role of MAS/LUCC models. This section condenses 

various uses of MAS into similar categories—explanatory approaches (Picasso) and descriptive 

approaches (photographic)—and discusses the types of knowledge hoped for and the advantages 

and disadvantages of both.  

Explanatory Approaches 

Explanatory approaches conceive MAS to be a social laboratory. This type of modeling strives to 

explore theory and generate hypotheses. Modelers begin with a theoretical framework and 

formalize it in computer code in order to examine the ramifications of their framework and 

potentially generate new hypotheses to explore empirically. As with any theoretical enterprise, 

explanatory models may emphasize some details about a phenomenon and ignore others. Akin to 

Picasso’s portraits, these models focus on particular processes or dynamics in order to achieve 

fundamental understanding about aspects of a phenomenon.  

One way to conceive of this type of modeling is as a method for testing candidate explanations. 

Epstein (1999) is perhaps the best proponent of this approach, arguing that we need to pursue 

generative social science. Candidate explanation modeling entails describing (through a model) 

how the “decentralized local interactions of heterogeneous boundedly rational autonomous 

agents generate” a regularity (Epstein 1999, p. 41). Tesfatsion also suggests this role for agent-

based models in economics, noting that one key role for such models is to demonstrate how 

market regularities can emerge from “repeated local interactions of autonomous agents acting in 

their own perceived self interest” (2001, p. 282).  
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Using MAS models to develop candidate explanations follows simple logic. There is a target 

empirical macroscopic phenomenon (or pattern or regularity) that often represents an emergent 

property of a complex system, such as the spatial organization inherent in patterns of human 

settlement. The modeler develops a series of rules, interactions, and specifications for the agents 

and their environment, and then allows agents to interact within a simulation environment. If the 

macrophenomenon that results resembles the empirical phenomenon of interest, then the modeler 

has uncovered, at the very least, a candidate explanation for the empirical phenomenon (see 

Axtell and Epstein 1994 for discussion of the difficulty in determining what constitutes 

resemblance). When used in this manner, MAS allows modelers to assess the ramifications and 

boundary conditions of theories and hypotheses, as it facilitates plausibility check on the 

empirical expectations that flow from theories. Further, MAS models provide the opportunity to 

systematically test alternative explanations. 

This type of modeling can be considered normative in that it attempts to encapsulate critical 

mechanisms in order to function as a virtual laboratory. Again, when outcomes from 

theoretically based constructions mimic reality, support is lent to the theory. These models 

purport to be explanatory by stating how reality should or would be under idealized 

circumstances. Explanatory MAS/LUCC models do not attempt to reproduce actual land-use 

systems, but instead concentrate on specific aspects and modeling fundamental dynamics in the 

hope that such laboratory explorations will lead to empirically relevant insights.  

Beyond simulating the ramifications of given theories, explanatory approaches also hope to find 

novel hypotheses. Researchers may construct a model with the specific goal of examining the 

possible (but unknown) macroscopic implications of a particular set of microlevel interactions. 

The early prisoner’s dilemma computer tournaments, in which researchers competed by 



 
34

submitting agent-based programs representing strategies, are a prime example of this type of 

modeling (Axelrod 1984, 1997a). It was far from clear at the outset which strategies would be 

most successful, and most researchers would have argued initially that cooperative outcomes 

would be unlikely candidates. The fact that tit for tat, a strategy that entails cooperation, emerged 

as successful opened up a productive empirical research avenue in politics and economics. 

MAS/LUCC models can potentially play the same role. Models that explore fundamental 

processes can potentially be used to derive novel testable hypotheses that relate 

landowner/manager decisions to land-use and land-cover outcomes.  

Thus, in general, explanatory modeling approaches allow modelers to: (1) demonstrate that a set 

of rules can lead to the outcome of interest—test theory; (2) explore other possible causes that 

could lead to the same outcome—formally exploring the robustness of the proposed causal 

explanations; and (3) discover outcomes not originally anticipated. The potential drawback of 

this approach is the lack of a clear method for evaluating the empirical utility of the simulations. 

Because abstract concepts make up the building blocks of these models, and general patterns and 

phenomena are the goal, it is difficult to establish what the models tell us about reality. While 

they can tell us a great deal about our theorizing and thinking, they may supply less 

understanding of specific real-world systems. 

Descriptive Approaches 

Descriptive approaches follow a fundamentally different logic and are more concerned with 

empirical validity and/or predictive capacity. Like Casti’s (1997) photograph metaphor, these 

approaches attempt to mimic real-world systems to facilitate direct empirical and policy scenario 

research.  
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In LUCC modeling terms, empirically based MAS/LUCC models may be constructed to achieve 

a variety of goals: to replicate landscape composition and function, to examine the impact of 

policies that influence socioeconomic behavior on the biophysical environment, to demonstrate 

the value of using information on spatial heterogeneity and interactions, among others. Such 

models would be as fully parameterized with real-world data as possible and, ideally, would 

incorporate links with models representing important biophysical processes, such as hydrologic 

flows, vegetation growth models, soil fertility, and transport and fate of pollutants. Within a GIS-

based model, socioeconomic and biophysical inputs could be linked through common spatial 

identifiers. To the extent possible, given data availability, the scale at which social and 

biophysical processes operate in the model would match researchers’ understanding of the scale 

at which they operate in the real world.  

Using MAS methods for this type of modeling may be more effective in several areas than using 

existing empirical models. First, by modeling at a fine resolution, such models may make the 

best statistical use of available information. Second, as noted above, by accounting for 

heterogeneity and interdependencies, the models can reflect important endogenous feedbacks 

between socioeconomic and biophysical processes. Last, since the models are not constructed to 

meet a set of equilibrium criteria, they can produce discontinuous and nonlinear phenomena, 

such as extinctions, regime shifts, and exponential growth of populations.  

Descriptive models can often be identified by claims made of their replicative ability, 

particularly when applied to land-use/cover change. Herein lie both their advantage (noted 

above) and their disadvantage. For many of these fitting models, MAS practitioners may point 

out ways in which their models provide insight into real-world processes. This provides hope for 

real relevance in terms of policy making. These intuitive insights, however, can potentially come 
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at the cost of more general rules, and descriptive models may thereby move us away from 

developing normative statements (Judson 1994).  

A different type of problem arises from a fundamental fact regarding modeling. With 

MAS/LUCC techniques we can create an infinite number of models, while reality remains 

singular. Thus we must be on guard and temper our conclusions, as it is possible to develop a 

model that can reproduce a statistically correct metaphenomenon with a model structure that 

does not capture real processes. The most dangerous situation, of course, is when we achieve 

metaverisimilitude with a model mechanism that is close enough to be perceived as being correct 

when in fact it is not. These disadvantages, rather than nullifying the utility of descriptive 

approaches instead necessitate a recognition of the underlying uncertainty in any modeling 

enterprise and caution in claims, especially where policy prescriptions are concerned (Oreskes, 

Shrader-Frechette, and Belitz 1994).  

Moving Forward 

The explanatory and descriptive approaches described above represent a continuum rather than a 

dichotomous, mutually exclusive choice. There will always be aspects of both photographs and 

Picasso in any model built to explore LUCC questions. At issue is the question of how precise 

we should make our re-creations of specific social/environmental systems and what information 

we hope to glean from our simulations. If the goal of our modeling endeavors is the re-creation 

of actual land use in specific locations over time for use in policy scenario modeling and 

prediction, then the descriptive approach is indicated. If instead, we hope to understand generic 

patterns of land-use/cover change over time, such that we can find and apply insights to a wide 

range of specific empirical situations, then an explanatory approach is appropriate. To some 
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extent our choices are constrained by the data available and the theoretical sophistication already 

achieved. However, it is crucial that the larger question of modeling philosophy, explanatory 

versus descriptive, be acknowledged and understood.  

6. Building an Empirically Grounded Model 

Modeling and simulation are useful approaches to exploring LUCC, but their utility is dependant 

on adequate verification and validation. Verification and validation concern, respectively, the 

correctness of model construction and the truthfulness of a model with respect to its problem 

domain. In other words, verification means building the system right, and validation means 

building the right system. Verification techniques range from debugging the computer program 

that underlies the simulation to ensuring that model structure is adequate. Once a model is 

verified and works correctly, then the modeler is concerned with validation—comparing model 

outcomes to outside data and expectations. It is important to note that these definitions of 

validation and verification are model-centric terms that do not immediately address larger 

epistemological questions of modeling in general (e.g., Oreskes, Shrader-Frechette, and Belitz 

1994). 

Verification 

Simultaneously, the greatest advantage and shortcoming of agent-based models is their flexibility 

of specification and design. Verification reduces the problematic nature of flexibility by vetting 

model structure and the rules employed. In particular, success in verifying a model lies in 

striking a balance between theory and data. Fortunately, a hallmark of MAS is the ability to map 

the concepts and structures of real world onto the model in a way that preserves natural objects 

and connections (Batty 2001; Kerridge, Hine, and Wigan 2001).  
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Apart from examining the balance between theory and data, verification essentially involves 

attempts to break the model by varying model configurations. This process leads to debugging—

careful assessment of model objects and linkages among them. Effective communication of 

model design to others can assist in verification. Most modeling publications do not contain a 

sufficient description of the simulation to permit the reader to fully understand model design and 

therefore the appropriateness of verification procedures. Furthermore, a general lack of published 

code for LUCC models and a lack of common modeling platforms renders replication difficult. 

A growing tradition of publishing software code along with manuscripts, however, exists within 

the agent-based modeling community. It behooves MAS/LUCC research to continue this 

tradition. Similarly, as more models adopt common standards, verification will become easier. 

Key to verification is sensitivity analysis of relationships between model parameters and the state 

or time path of variables endogenous to the modeled system. Incremental parameter changes are 

mapped against model outcomes in order to ascertain the spatial or temporal limits of a model’s 

applicability and identify programming artifacts. Common techniques, borrowed from closed-

form analytical modeling, are comparative static (Silberberg 1990) and comparative dynamic 

(Kaimowitz and Angelsen 1998) methods. Closely allied to sensitivity analysis is the study of 

error propagation and uncertainty, a topic often left unconsidered in LUCC modeling (Robinson 

1994). This topic ranges from studying the effects on errors of mathematical operations (Alonso 

1968), to error classification in remote sensing (Riley et al. 1997), and to treatment of error and 

uncertainty in geographic information systems (Eastman 1999; Heuvelink 2002). 

Validation 

Validation concerns how well model outcomes represent real system behavior. Validation 

therefore involves comparing model outputs with real-world observations or the product of 
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another model or theory assumed to adequately characterize reality. Mounting interest in 

verification and validation of LUCC models is evidenced by a recent special issue of 

Agriculture, Ecosystems and Environment (Veldkamp and Lambin 2001). Data are drawn from 

other models, theories, and observations of the target system provided by surveys, role-playing 

games, interviews, censuses, and remote sensing (Deadman and Schlager Forthcoming; Manson 

2000). Outcomes of interest may be demographic, such as aggregated spatial distribution of 

population or migration. They may include patterns and degree of natural resource exploitation, 

such as groundwater quality, patterns of soil degradation, species population health and 

distribution, and spatial patterns of land cover. Also of interest are measures of economic well-

being, such as the value of output, income distribution, and trade flows. For many of these 

measures, researchers may be concerned with how both aggregate and spatial outcomes unfold 

over time. 

Model outcomes are compared to real outcomes using a variety of aspatial and spatial measures. 

Statistics is home to an array of techniques geared toward description and hypothesis testing 

appropriate for analyzing aspatial outcomes. In terms of spatial measures, the complexity of 

land-use/cover change suggests use of a variety of tests to measure spatiotemporal outcomes 

(Turner, Costanza, and Sklar 1989). This need is evidenced through many authors’ use of spatial 

statistical approaches (point-pattern and landscape metrics) to compare modeled outcomes and 

data (Alberti and Waddell 2000; Batty and Xie 1994; Herold and Menz 2001; Irwin and 

Bockstael 2002; Manson 2000; Parker 2000; Parker, Evans, and Meretsky 2001; White and 

Engelen 1993). While pattern and texture metrics are useful for their ties to ecological 

characteristics such as biotic diversity (Giles and Trani 1999), their use is tempered by 

uncertainty about the linkage between fractal metrics and ecological processes (Li 2000). 
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Location-based methods such as error matrix analysis or the kappa statistics are now joined by 

measures that better differentiate between location prediction and quantity prediction (Pontius 

2000; Pontius and Schneider 2001). 

Pitfalls in Verification and Validation 

As has been widely recognized throughout geography, there are scale-related problems held in 

common by verification and validation for MAS/LUCC models. Change analysis of spatial data, 

for instance, is affected by changing resolution (Lam and Quattrochi 1992) and extent (Saura and 

Millan 2001). Scale effects can be statistically causal, since variables differentially co-vary as a 

function of the scale at which they are measured (Bian 1997). For MAS/LUCC researchers, the 

need for a sufficient sample size to ensure statistical significance, the resolution at which the 

MAS/LUCC model operates, and the resolution of available data may influence the choice of 

spatial resolution for comparison of modeled and real-world outputs. Researchers making spatial 

comparisons are cautioned to be aware of potential issues related to both scale and spatial 

correlation, as discussed by the authors above. There is a long history of research into issues of 

scalar, spatial, and temporal corollaries of verification and validation techniques upon which 

researchers may draw (Anselin 1988; Cliff and Ord 1973; Heuvelink 2002; Openshaw 1977; 

Pontius and Schneider 2001). 

Finally, assumptions necessary for verification and validation, such as normality and linearity, 

can be at odds with models designed to accommodate complex behaviors caused by sensitivity to 

initial conditions, self-organized criticality, path dependency, or nonlinearities (Arthur 1988; 

Kauffman 1994; Manson 2001). In effect, the very synergies that make complex systems 

interesting also make them difficult to analyze. There is therefore a need for techniques such as 

active nonlinear testing, which seeks out sets of strongly interacting parameters in a search for 
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relationships across variables that are not found by traditional verification and validation (Miller 

1998). Further, researchers should be careful that abrupt changes in system behavior and 

unexpected outcomes are ultimately explained by the conceptual framework embodied in the 

model. Outcomes must be traced back to a unique set of precursors and not model artifacts. 

A final challenge lies in abstraction, since many outcomes of human interaction, such as trust or 

learning, are imputed or abstract. Validating abstract outcomes is difficult since they are ill-

defined or not easily measured. One solution is expert and stakeholder interviews that provide a 

sense of how emergent outcomes are related to model structure and processes (Bousquet et al. 

1998).  

The various challenges faced in model validation and verification highlight the need for more 

sophisticated approaches. Verification and validation of agent-based models will be aided by 

better communication of model design through adoption of common languages, standard 

techniques, and better linkages to other software used in LUCC research, such as GIS and 

statistical packages. Otherwise, two broad questions will continue to guide the development of 

verification and validation. First, what do we learn when different model configurations enjoy 

varying levels of success across different forms of verification and validation? Second, does a 

model behave as expected when key components or their interdependencies are varied? Does the 

removal of a key resource institution, for example, result in an anticipated or documented land-

use/cover change? It is the role of both verification and validation to determine which 

components are important and why. 
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7. Challenges and Conclusions 

This paper has outlined many of the issues researchers face when constructing multi-agent 

system models of land-use/cover change. There remain a number of fundamental challenges for 

which no clear solutions exist. These issues must be addressed in the coming years in order for 

MAS/LUCC modeling to evolve into a mature scientific field. 

General Modeling Challenges 

Many of these challenges mirror those faced when undertaking any modeling endeavor. In order 

to identify an appropriate degree of abstraction for the model, researchers must have a clear idea 

of the goal of their modeling effort. Is it a stylized representation of an abstract system that may 

produce results that are easily generalized to a wide variety of circumstances, or a carefully 

parameterized empirical model appropriate for scenario and policy analysis? Researchers may 

even choose to create models at both ends of the spectrum in order to allow the development of 

each model to inform development of the other. Whatever the goal of modeling efforts, 

balancing the utility of abstraction against the need to include the critical components of the 

system under study is a major challenge of modeling. Finally, developing techniques to 

understand the relationship between model components and outcomes is a major challenge, and 

success in this area is likely to impact the acceptance of model results by the broader scientific 

community. 

Most MAS/LUCC models are by their nature interdisciplinary. Therefore, researchers building 

these models face a formidable set of challenges unique to interdisciplinary research. A major 

challenge relates to building an experimental frame that can be used to answer questions of 

interest to multiple disciplines. A second challenge lies in unifying models that may operate, 
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perhaps appropriately, at different spatial and temporal scales. This challenge occurs both at the 

time of model construction and when model outcomes are analyzed.  

Building an Experimental Frame 

Since the real world is far too complex to model in its entirety, we must define an experimental 

frame that we can use to guide our data collection, modeling, and validation efforts. In defining 

such an experimental frame, we place boundaries around a subset of the real world. These 

boundaries can be defined in a variety of ways based on the spatial extent of a study area, the 

institutions or other human systems considered, and the temporal period of interest. Experimental 

frames are also defined in reference to particular research questions and bodies of knowledge. A 

real-world system can have any number of experimental frames associated with it. For example, 

the experimental frames for a particular fishery would be different for an ecologist, a fisheries 

biologist, or an economist. When the purpose of the modeling effort is specifically 

interdisciplinary, the boundaries of the experimental frame will be broadened, but challenges 

inherent to the definition of any model—defining the appropriate degree of abstraction and 

identifying which factors will be endogenous to the model—remain. 

Scale Considerations 

While MAS/LUCC models can theoretically integrate submodels across disciplines, a caveat is 

that models representing these processes must work according to compatible spatial and temporal 

scales. Frequently, processes in different disciplines operate over different scales, and relevant 

boundaries of scale do not coincide. These incompatibilities potentially occur over both spatial 

and temporal scales. Thus, representing and integrating processes across scale is a major 

modeling challenge. While issues of scale are central to the discipline of ecology (Levin 1992), 

within the social sciences, the significance of scale is only beginning to be explored. In order to 
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link ecological and social processes, a common understanding of how to address scale in 

integrated systems is needed (Gibson, Ostrom, and Ahn 2000). 

MAS/LUCC models can theoretically be structured to match the scale and structure of the 

available spatial data. However, if spatial data are not available at a scale fine enough to be 

compatible with the minimum spatial unit at which human decision making and/or ecological 

processes operate, then parameterization of a MAS model may be difficult, and MAS results may 

need to be scaled up for comparisons with actual data. The result may be a statistical loss of 

information. 

When landscapes are directly compared, issues of spatial scale become potentially important in 

analyzing model outcomes. Within a defined geographical area, spatial heterogeneity that is 

apparent at a fine spatial scale may not show up as an aggregate, cross-region measure. Thus, if 

scale-dependent phenomena are present in the landscape of interest, the choice of spatial unit of 

analysis becomes quite important when comparing model outputs. This potential scale 

dependence in measuring results highlights the importance of identifying the appropriate spatial 

scale for decision making in the model.  

Specific Challenges 

Understanding Complexity 

Many challenges we have discussed are specific to MAS/LUCC models. These include the need 

to understand and represent complexity. While we have argued that MAS/LUCC models are an 

excellent tool for modeling complexity in human-influenced landscapes, it also must be 

acknowledged that the theory that defines complexity is still in the developmental stage. Thus, 
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modeling and understanding complexity will surely be an iterative process, and, as researchers, 

we may find the road we have taken changes even as we are in the middle of our journey. 

Individual Decision Making 

We have seen that many competing models of decision making exist. One of the strengths of 

MAS/LUCC modeling lies in the diversity of disciplinary perspectives that it brings together. 

Yet the result of this diversity is that radically different approaches have been used to represent 

human behavior through agent-based models. Within the community of multi-agent simulation, 

most researchers embrace a variant of bounded rationality for modeling human decision making. 

The resulting problem is an almost infinite number of possible formulations of agents.  

A key challenge for researchers designing an agent-based model is to decide among the sheer 

number of competing techniques and theories for modeling decision making. In order for MAS 

modeling to become a viable long-term field, more comparison between different research 

efforts is needed. There is a particular need for research that compares these decision-making 

models to extant theory, practice, and observation of the real world. Such research would focus 

on the macroscale implications of particular microscale decision-making strategies and would 

examine whether particular agent decision-making formulations are appropriate for particular 

decision-making situations. This research would simultaneously support current approaches 

when there is agreement and point the way for improvements (in both general MAS and 

MAS/LUCC work) when there is disagreement. 
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Modeling Institutions 

Institutions—the formal and informal rules between agents—constrain the actions of agents to 

derive an improved collective outcome. During the last twenty years, there has been much 

improved understanding of the factors that influence collective action problems (Ostrom 1998). 

However, formal models of the empirical insights are lacking. Nevertheless, numerous studies 

have focused on the evolution of cooperation in collective choice problems (Axelrod 1984). 

These game-theory–oriented studies focus on the selection of a limited set of rules. The 

importance of social norms and reputation has been investigated, but important aspects such as 

the creation of rules, social memory, and the role of symbols and communications, have not been 

incorporated in formal models. Many of these phenomena play a potentially important role in 

LUCC systems, but development of formal models remains a challenge. 

Empirical Parameterization and Model Validation 

MAS/LUCC models, due to their complexity and ability to represent detail, may face unique 

challenges of parameterization and validation. To a high degree, development of techniques for 

understanding output lag behind development of the tools that produce output. On the cellular 

modeling side, fine-resolution data appropriate for model validation are just beginning to become 

widely available, and the availability of social science data lags behind the availability of natural 

science data. Confidentiality concerns related to fine-resolution data on land use contribute to 

this lag. On the agent-based modeling side, massive advances in computing power have meant 

that sophisticated tools have become widely used before researchers have had time to consider 

and develop methods to link these models to data.  

These challenges represent exciting opportunities for researchers. There is no end to interesting 

interdisciplinary research questions for which MAS/LUCC models are an appropriate tool. We 
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are in an era of both increased computing power and increased availability of spatial data. While 

many unanswered questions remain, researchers have the ability to draw on and combine 

knowledge from many disciplines, including landscape ecology, spatial statistics, and 

econometrics, in order to develop creative new tools for empirical analysis. 

Communication 

For some scholars, who argue that analytical proofs are required for the scientific method to be 

upheld, MAS/LUCC models have the image of pseudoscience. Multi-agent simulations produce 

colorful moving output, which might give the impression that they involve nothing more than 

playing games. Since most practitioners of MAS modeling purposely incorporate uncertainty and 

path dependence in their modeling efforts, each simulation might produce different results. 

Robust solutions can be derived with multiple experiments, but they do not have the power of 

mathematical proofs. Effective and convincing communication of our results is therefore a 

challenge.  

Several strategies may assist in this goal. The first is to attempt to replicate findings using more 

than one modeling approach. This strategy has been followed by a number of authors whose 

work compares experimental and computational results (Arthur 1991; Axelrod 1986; Duffy 

2001). A second approach attempts to replicate analytical findings in a simulation environment 

(Andreoni and Miller 1993; Arifovic 1994; Epstein and Axtell 1996; Marimon, McGratten, and 

Sargent 1990; Marks 1992; Miller and Shubik 1992; Nyarko, Woodford, and Yannelis 1994; 

Weibull 1995). These approaches demonstrate, under a set of simplifying assumptions, that a 

computational model can replicate a well-established analytical result. Within LUCC modeling, 

researchers may choose to make comparisons between the many alternative land-use modeling 

strategies described in Section 2 and the results from MAS/LUCC models.  
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A second strategy is to continue development of empirically parameterized and tested models. 

Historically, while many empirical cellular models of LUCC phenomena exist, agent-based 

models have been by and large theoretical. As empirical models are developed and tested, the 

circle of the scientific method will be completed for this new approach, and models will likely 

gain greater acceptance and use.  

A final strategy is to encourage and facilitate clear communication of model mechanisms and 

results. Provision of modeling source code can be encouraged when possible. Currently, 

MAS/LUCC models are implemented in diverse programming languages and platforms in order 

to meet the specialized needs of particular projects (Parker, Berger, and Manson Forthcoming). 

In order to encourage cross-fertilization and comparisons between models, however, it may be 

important to have a common language through which model mechanisms can be communicated. 

Documentation of models using Unified Modeling Language may serve as a partial remedy to 

this communication gap (Fowler and Scott 1999). While we encourage journal and volume 

editors to provide space for extensive model documentation, we recognize that this space is 

costly. Therefore, a centralized repository for source code and documentation could be a 

valuable infrastructure addition for the MAS/LUCC community.  

Conclusions 

This paper began with a set of questions designed to focus our exploration of MAS/LUCC 

modeling. In the course of the paper, we endeavored to, but did not fully succeed in answering 

all of the questions, because indeed not all of the final answers are yet available. Instead, the 

utility of this paper has been in delineating the uses, obstacles, advantages and disadvantages 

associated with this particular methodology. We demonstrated that in principle MAS/LUCC 

models offer tools that can facilitate progress in understanding processes of land-use/cover 
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change. We delineated the type of issues and processes that MAS/LUCC models can address and 

those where traditional methods likely suffice. We outlined the deliberation that must take place 

in choosing a modeling strategy—namely, what type of role is the model expected to play in a 

research project? We discussed the crucial issues of verification and validation, noting the 

challenges that lie ahead in empirical applications of these models. Finally, we noted the broad 

and open questions that MAS/LUCC research must address if this methodology is to become 

accepted. This exercise in clarifying the questions, challenges, and possibilities surrounding 

MAS/LUCC thus builds a foundation for further progress. 

The authors represent a range of social science disciplines, and our review is necessarily 

weighted somewhat by our disciplinary perspectives and expertise. We have seen, however, that 

no one methodological approach dominates this nascent field. Rather, a wide range of techniques 

for model development and empirical assessment are used, and, in many cases, insightful 

comparisons have resulted when multiple approaches are used to tackle a single research 

question. Further, modeling efforts represent a spectrum from highly abstract to highly empirical 

applications. Ideally, this diversity will spur a dialog between modelers working at each end of 

the spectrum, with lessons from one end being used to inform the other. Finally, it is clear that 

this modeling field will benefit from the development of a set of common metrics that can be 

used to test simulations and from continued effort to validate models of human decision making. 

While many challenges remain, the many recent developments reflect an encouraging trend to 

integrate the many tools and disciplines required to develop a new methodology for dynamic 

spatial modeling of human-environment interactions
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