The System of World Cities: Studying Suburbanization Since 1970
Satellite Imagery

John R. Weeks
International Population Center
Department of Geography

Christopher Chase-Dunn,
Alexis Alvarez and Daniel Pasciuti
Institute for Research on World-Systems
University of California-Riverside
• Sustainable Urbanization

• Is sprawl accelerating or slowing down?

• Megacities and City regions: 250 World Cities and 10 city-regions

• Measuring sprawl: a methodology for measuring the rates and the nature of the areal expansion of world cities and the patterns of decreasing population density

• Ridd’s VIS Model

• The Urban Gradient
Megacities and City regions: 250 World Cities
• Megacities and City regions: ten largest city-regions
When we see a satellite image, such as this of Cairo, can we use it to describe what is on the ground at this point?

Measuring sprawl: a methodology for measuring the rates and the nature of the areal expansion of world cities and the patterns of decreasing population density.
Ridd’s V-I-S Model of the Urban Scene

THE URBAN GRADIENT MAY BE DISCONTINUOUS

Level of urbanness

Wilderness: largely bare soil

Agricultural: mix of vegetation and bare soil

City: largely impervious surface

Our focus

Spectral properties of land cover
An Illustration From Egypt
Initially we use the administrative units from the census, so that we can compare our imagery results with the census results.

The long-term goal is to produce a gridded surface, perhaps 0.25 km, that can be compared more precisely over time.
CREATING AN URBAN GRADIENT INDEX:

We begin with the assumption that we are indexing places, not people. Once the spatial unit of analysis is determined, then the following issues must be dealt with in the creation of an index: (1) the variables to be combined in the index; and (2) how the variables will be combined to create an index.
VARIABLES THAT ARE CANDIDATES FOR THE URBAN GRADIENT INDEX:

Imagery-Derived
- Vegetation fraction
- Shade/water fraction
- Impervious surface fraction
- Bare soil fraction
- *Landscape metrics—measures of spatial complexity and configuration*

Census-Derived
- Total population
- Population per sq km
- Percent of males not in agriculture
COMBINING VARIABLES INTO AN INDEX:

\[
\text{image_index} = \text{imp} + \left(2 \times \sqrt{\text{soil}} \right) + \left(2 \times \sqrt{\text{shade}} \right)
\]

\[
\text{census_index} = \left\{ \left[\ln \left(\text{pop_density} \right) \times \left(\text{non_ag} \right) \right] / 12.82 \right\} \times 10
\]
Spatial Distribution of Change in Image-based Urban Gradient: 1986-1996
CONCLUSIONS:

By developing a quantitative measure that is comparable from place to place and time to time, we have the potential to compare regions on the basis of a score that reflects important elements of the built environment that will enable us to study changing rates of suburbanization and the world city size distribution.
For more information, visit our websites:

http://typhoon.sdsu.edu/Research/Projects/Aftweb/AFT-main.htm

http://irows.ucr.edu/research/citemp/citemp.html