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Abstract

An overview isgiven of the SAND spatial database system, an environment for devel oping applica-
tionsinvolving both spatial and non-spatial data. The SAND kernel implements a relational data model
extended with several geometric functionsand predicates as well as a spatial index. The main interface
to SAND isthrough an embedded interpreted language. This permitstherapid prototyping of agorithms
and makes SAND auseful tool both for applicationsand research. A graphical user interface that allows
for easy database querying, and a client/server approach that simplifies remote access are aso outlined.
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1 Introduction

The dramatic rise in the use of the Internet and the worldwide web hasled to a re-examination of traditional
ways of looking at data. In particular, we increasingly find the need for applications to be location-aware.
This means the incorporation of spatial data such as that found in maps. The first revolutionary step was
the devel opment of geographic information systems (GIS). In fact, one of the principal motivationsfor the
development of GISisto lessen the time necessary to produce a map. Maps have traditionally been formed
asaresult of asequence of physical overlay operations and thus areduction in thetime necessary to perform
such atask has always been viewed as desirable. Computerizing this physical process was viewed as such
an improvement in speed that users were not overly concerned with making the computer execution time
optimal. In particular, taking several hours to compute a result was considered acceptable in light of the
time needed to tabulate the query manually and generate the output. Unfortunately, users today have been
conditioned to get results quickly and do not want to spend much time waiting for them. In other words,
they are willing to accept aresult that is not 100% accurate and without so much detail provided that they
can obtainit sufficiently quickly and with enough detail to make an intelligent decision (see[16] for asimilar
conclusion in a database environment).

1.1 Direct Manipulation

One of the principal reasonsfor thischange of thinkingisthefamiliarity of GISuserswith spreadsheets. The
invention of the spreadsheet is generally accepted as the most important factor in demonstrating the utility
of the computer to the average user. It enabled her to answer questions such as “what if ...” without large
commitments of time and money. One of the powers of the spreadsheet liesin its ability to make a database
come adlivein avisua sense. Moreover, the method of interaction with the spreadsheet is usually via direct
manipulation (e.g., [29]) in the sense that users do not need to know how to write computer programs to get
the output they desire. Instead, all operationsare in terms of the basic entitiesand actions of the spreadsheet
(i.e., therows, columns, and drag-drop actions). Thus the spreadsheet enables usersto have avery powerful
decision support tool that respondsto their requestsinstantly. They do not have to go to the printer to get the
output to their queries. The output isin aformat that facilitates subsequent queries.

Armed with their experiences with spreadsheets, it is not unreasonabl e for usersto expect the same capa-
bility from their other decision making tools. Unfortunately, thisis not so easy. For example, in the context
of a GIS whose output is apaper map, once we have generated the paper map, we cannot simply annotate it
with changes and pose subsequent queries on the modified map. Of course, we could savethe output digitally
and work directly on the screen. The limited resolution of the screen can be compensated by having azoom
capability (eg., [5, 6, 21, 28]). Nevertheless, the fact that the output has the resol ution usually expected for
apaper map meant that the operations also took quite along timeto execute. Thisis especialy troublesome
when users do not necessarily require such resolution.

An additional problem for usersisthat frequently the type of queriesthat they wish to pose are a combi-
nation of spatial and nonspatial data. Spatial dataisusualy storedinaGIS (e.g., Arclnfo from ESRI) while
nonspatial dataisstored in aconventional database management system (DBMS) [14, 31, 33]. Thedrawback
of most GISisthat they are usually very good for location-based queries such as “what featureis at location
x?" However, they are not so good for feature-based queries such as “where isfeaturey?’ [3]. Such queries
are usualy best handled by aconventional DBMS. Users want to answer both of these types of querieswith
equal ease. They do not want to know how the GIS or the nonspatial database are organized.

Handling such queriesrequires aseamlessintegration of spatial and nonspatia data[14, 31, 33]. Theidea
istointeract with aspatia database (GIS) in the same manner as we would interact with anonspatia DBMS.,
Moreover, spatial operations should be executed using conventional database primitives. One problem with
conventional DBMSsisthat they are usually accessed viatheaid of SQL (Structured Query Language) which



israther cumbersome when it comes to nonstandard data such as maps and images [10], athough there have
been anumber of attemptsto adapt SQL to the spatial domain (e.g., [11, 13, 25]). Nevertheless, a graphical
user interfaceismore appropriateasit enables usersto query the underlying database without having toworry
about whether or not a corresponding SQL extension has been defined already.

Conventional spreadsheets get their name from the fact that all the datais spread out in atabular format
and operations are specified in terms of combinations of rows and columns. An anal ogous problem-solving
paradigminaGlSistheoverlay concept (e.g., [12, 32]). Inthiscase, operationsare specified as compositions
of maps with the output of one or more operations serving as input to other operations. Frequently, inaGIS
thereis no need for the operation to run to completion to obtain the desired results. Often, we would like to
proceed inapipelined fashion wherethefirst results of an operation arefed asinputsto subsequent operations.
We characterize such a solution as being incremental. We use the term browsing (browser) to describe the
physical process (processor) of (for) obtaining an answer incrementaly.

1.2 Example

Asan example of one of the composition queriesthat we wish to handle, consider “finding the closest county
(in terms of distancesin the plane) to Cook County (i.e., Chicago) with a bladder cancer mortality rate for
white males greater than 7.5 per 100,000 people in the period 1970-1994 and a population greater than 1
million”. What makesthisquery difficult isthe presence of the spatial conditioninvolving distances between
two-dimensional regions. Conventional DBM Ss facilitate retrieval on the basis of a particular attribute by
buildinganindex for it (i.e., sortingit). In thecase of one-dimensional datalikethe mortality rate per 100,000
people and the population, thisis quite simple aswe have a zero reference point with which to sort the data.
For example, assuming the existence of an index on the bladder cancer mortality rate per 100,000 peoplein
the period 1970-1994, to find al counties in the order of the closeness of their mortality rate per 100,000
peopleto that of Cook County for whichit is 8.5, we look up the value 8.5 in the index and then proceed in
two directions along the index on the popul ation attribute to obtain the nearest counties by mortality rate per
100,000 people in constant time. We do not have to rebuild the index if we want to be able to answer the
next query which deals with the mortality rate per 100,000 peoplein Los Angeles county whose population
isabout 8 million.

Unfortunately, this strategy cannot be used when dealing with distances in the two-dimensional plane.
For exampl e, to find the county closest to Cook County, we could sort the countiesaccording to their distances
from Cook County. However, to find the closest county to Los Angeles County, the list of sorted distances
from Cook County is not useful to us dueto the non-additivity of distancesin domainswhose dimensionality
isgreater than one. In other words, the distance from Cook County to Los Angeles County isnot equal tothe
sum of thedistancefrom Los Angeles County to St. Louis County and the distancefrom St. Louis County to
Cook County. Thuswe need to be careful in the manner in which we represent the locations of the counties.
In particular, we need to use an implicit spatia index that is based on spatial occupancy (e.g., aquadtree, R-
tree, etc. [26, 27]) rather than an explicit spatial index that is based on distances from a particular reference
point.

The query that we have just described is an instance of a process that we term ranking. Ranking is a
byproduct of sorting. However, often, we are only interested in the first few values (e.g., the three closest
counties to Cook County), in which case sorting the entire set of counties by distance from Cook County is
anoverkill. Moreover, aswe saw, if wewant the nearest three countiesto Los Angeles County, then we must
reinvokethe sort. Thusthe most frequent solutionisto calculate the k nearest countiesto Cook County. The
problem with this approach is that if we want the k + 1% (e.g., the fourth) nearest county to Cook County,
then we have to restart the computation and compute the k+ 1 (i.e., 4) nearest neighbors. Therefore, it is
preferable to compute the nearest neighborsin an incremental fashion so that we need not compute more
neighbors than are necessary. Thisis especially useful when we want to respond to queries such as finding



the nearest county to Cook County with a bladder cancer mortality rate for white males in the period 1970—
1994 greater than 7.5 per 100,000 people and a population greater than 1 million since the nearest one may
not satisfy the mortality rate and population conditions thereby necessitating finding the next nearest, etc.

1.3 Our System

SAND (denoting Spatial And Nonspatial Datd) is a prototype spatial database system/GIS developed at the
University of Maryland that has many of the above features. In particular, the SAND system contains a
browser called the SAND Browser that enables the visual definition and execution of these queries. We are
usingthe SAND systemin digital government applicationssuch as FedStats and the National Atlas of Cancer
Mortality. Theintended purpose of the SAND systemisto bearesearch vehiclefor work in spatia indexing,
gpatial algorithms, interactive spatia query interfaces, etc. The basic notion of SAND isto extend the tradi-
tiona relational database paradigm by alowing table attributes to be spatial objects (e.g., line segments or
polygons), and by allowing spatial indexes (such as quadtrees) to be built on such attributes, just astraditional
indexes (like B-trees) are built on nonspatial attributes.

Therest of thispaper isorganized asfollows. Section 2 describesthebasic structure of the SAND system
(i.e., the SAND kernel and the SAND interpreter), and which has recently been extended to function within
aclient/server environment. Section 3 presents the SAND Browser and the SAND Internet Browser, which
provide a graphical user interface to the query facilities of the SAND system, as well as examples of their
usein the context of digital government applications. Concluding remarks are drawnin Section 4 in addition
to suggestionsfor future work.

2 SAND

SAND is divided into two main layers, the SAND kernel, and the SAND interpreter (see Figure 4). The
SAND kernel was built in an object oriented fashion (using C++) and comprises a collection of classes (i.e.,
object types) and class hierarchies that encapsulate the various components. SAND adopts a data model in-
spired by the relational model. Thus, its core functionality is defined by the different types of tables and
attributes it supports, and the class hierarchies that encapsulate this functionality are among the most im-
portant. Both of these aspects of the SAND kernel are defined in an extensible manner, so that new table
and attribute types can readily be added to the system. The SAND interpreter provides alow-level proce-
dural query interface to the functionality defined by the SAND kernel. Using the query interface provided
by the SAND interpreter, we have built anumber of useful tools. In addition to the interactive spatia query
browsers described in Section 3, we have built a prototype for a high-level declarative query interface to
SAND, modeled on SQL, and a prototype image database system [30].

The SAND kernel hasmany of the characteristics of full-featured relational database systems. For exam-
ple, it has ablock-based storage manager that caches blocksassociated with the varioustables (i.e., relations
and indexes) in the system, with an LRU replacement policy. Furthermore, tuples (also termed rows and
records) are laid out in blocks such that a block may contain multiple tuples, while large tuples may span
multiple blocks. Nevertheless, dueto main emphasis of our research, SAND does not currently support fea-
tures such as transaction and concurrency support, or query planning and optimization.

2.1 TableTypes

The table abstraction in SAND encapsulates what in conventional databases are known as relations and in-
dexes. Tables are handled in much the same way as regular disk files, i.e., they have to be opened so that
input and output to disk storage can take place. All open tablesin SAND respond to a minimal common
set of operators, such asfirst, next, insert, and delete. SAND currently defines three table types: relations,
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linear indexes, and spatia indexes. Each table type supports an additional set of operators, specific to its
functionality. The function of many of these operatorsisto ater the order in which tuples are retrieved, i.e.,
the behavior of first and next.

first
next
insert
delete
tid

intersect

goto | Linear find [ spatial [ within
Index range | Index ranking
join

PMR zkd *
[Quadtree] [PK—tree} [B—tree} [ —tree]

Figure 1: The class hierarchy of tables supported by SAND (the arrows denote class deriva-
tion).

Relationsin SAND are tables that support direct access by tupleidentifier (tid, which are composed of a
block number and atuplenumber). Ordinarily, tuplesareretrievedin order of increasingtid, but the operation
goto tid can be used to jump to the tuple associated with the given tid (if it exists). For access by attribute
values, indexes can be defined on attributes or groups of attributes of relations.

Linear indexes for non-spatia attributes are implemented using B-trees[8]. Tuplesin alinear index are
always scanned in an order determined by alinear ordering relation. Linear indexessupport thefind operator,
that locates thefirst tuplein the index that is greater than or equal to the argument, and the range operator,
that is used to perform range search.

Indexescan also be defined on spatial attributesin SAND. The SAND kernel defines an extensibleframe-
work for spatial indexesthat makesit straight-forward to plug an al ready-implemented spatial access method
into the system. Currently, the system supportsindexing with the PMR quadtree [22], PK tree [34], zkd B-
tree [23], and R*-tree [4, 15]. Spatial attribute values indexed by a spatia index may be represented in up
to three ways (at least one of which must be supported by a given spatial index type): 1) inline, where the
spatia attribute value is stored inside the spatial index, 2) object table, where a separate tableis created to
store copies of theattribute values, and 3) fromrelation, wherethe attribute values are accessed directly from
thetuples of theindexed relation. The advantage of inlineisthat during search, all theinformation is present
in theindex, but it has the drawback that it makes the index larger. The advantage of object table over from
relationisthat therelation may contain many attributes, all of whichwould be accessed if the spatial attribute
value of atupleis needed during search. Moreover, the object table approach alowsclustering the spatial at-
tribute valuesin away that optimizes1/Os (see[7]), without affecting therelation itself. Nevertheless, it has
the drawback that the spatial attribute values are stored in two places, in the relation itself and in the object
table.

A number of standard search operators are defined for spatial indexes, some or all of which may be im-
plemented by a particular index type. These include intersect, for searching tuples that intersect a given
feature; within, for retrieving tuplesin the proximity of a given feature; and ranking [17, 19], for retriev-
ing tuplesin order of distance from a given feature (ranking is closely related to nearest neighbor queries).
Furthermore, the join operator can be applied on two spatial indexes, wherethejoinis either by intersection
(i.e., atraditional spatial join) or by distance (termed distancejoin[18]).
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Figure 2: Attribute types defined for each dimension class.

2.2 Attribute Types

SAND implements attributes of common non-spatial types (integer and floating point numbers, fixed-length
and variable-length strings, etc.) aswell asvariouskinds of spatia types. Attributetypes have an associated
dimension class, that group together “compatible” attribute types, and attribute values have an associated
dimensionality. The dimension classes currently defined in the system are labeled “1”, “2”, “2S", “3”, and
“N”, where the numeric label s correspond with the dimensionality, “2S’ denotes two-dimensional spherical
geometry [2], and “N” denotes arbitrary dimensionality (i.e., the attribute types of that class support spatial
objects of any fixed dimensionality). Thus, non-spatia attribute typesare al in the class labeled “1”, while
each spatial attribute type isin one of the other classes. All the spatial classes (i.e., classes other than “1”)
contain at least an attribute type for points and another one for axis-aligned hyper-rectangles. The attribute
types currently defined in each class are listed in Figure 2.

All attribute types support a common set of operations to convert their values to and from text, to copy
values between attributes of compatible types, as well as to compare vaues for equality. Non-spatial at-
tribute types a so support the compar e operator, which is used to establish alinear ordering between values
of the same type. Thisisrequired so that non-spatial attributes can be used as keysin linear indexes. Spa-
tial attribute types support a variety of geometric operations, including inter sect, which tests whether two
features intersect, distance, which returns the Euclidean distance between two features (used for the rank-
ing operator), and bbox, which returns the smallest axis-aligned rectangle that containsa given feature (i.e.,
its minimum bounding rectangle). Some spatial types support additional operations. For instance, the re-
gion type supports operations like expand, which can be used to perform morphological operations such as
contraction and expansion, and transfor m, which can be used in the computation of set-theoretic operations.

The attribute types listed in Figure 2 may be thought of as comprising a class hierarchy, with the base
class “Attribute”, and a derived base class for each dimension class, as partialy depicted in Figure reffig-
sandattr. However, for performance reasons and for increased flexibility, instead of relying on the object-
oriented features of C++, we opted to develop our own attribute type manager that provides an extensible
mechanism for attribute types and functions on them. The type manager maintains aregistry of types, each
of which has an associated string identifier (aslisted in Figure 2) and a unique numeric identifier that is used
internally. Furthermore, the type manager coordinates the creation and release of spatia objects, and the
invocation of the common set of operations mentioned above. The type manager also maintains a function
registry, where each function is aso identified by a string, and may take an arbitrary number of arguments
(each of which may be for afixed attribute type or for an arbitrary one) and have a return value of severd
different types. Thefunctionregistry isused for the spatial operations mentioned above, inter sect, distance,
and bbox, that are defined for al spatial attribute types, aswell as for specialized operationsthat have been
added asneedsarose (e.g., areafor computing thearea of two-dimensional polygons). With thetype manager
itiseasy to add new typesand functionson themto the system, and the set of typesand functionsinthe system
is continually growing.
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Figure 3: Some of the attributes types implemented in SAND and some of the operations
defined on them.

2.3 The SAND/Tcl Interface

The SAND kernel providesthe basic functionality needed for storing and processing spatia and non-spatial
data. In order to access the functionality of thiskernel in aflexible way, we opted to provide an interface to
it by means of an interpreted scripting language, Tcl [24]. Tcl offers the benefits of an interpreted language
but still allows code written in a high-level compiled language (in our case, C++) to be incorporated via a
very simpleinterface mechanism. Another advantage offered by Tcl isthat it provides a seamlessinterface
with Tk [24], atoolkit for developing graphical user interfaces.

The SAND interpreter provides commands that mirror all kernel operations mentioned in the previous
sections. In some cases, a single command may cause more than one kernel operation to be performed. In
addition, the interpreter implements data definition facilities. The processing of spatial queriesis supported
by interpreter commands that operate on spatial attributesand spatial indexes. While some of the commands
availablein the SAND interpreter are for accessing SAND kernel functionality, most are defined by the un-
derlying Tcl interpreter and the Tk toolkit. In addition, we developed a Tk “widget” for displaying two-
dimensional maps, used by the SAND Browser (see Section 3.1), that efficiently handles |arge data sets and
provides zooming and panning facilities. Furthermore, system can be extended through Tcl’s scripting ca-
pability by writing new methods or query strategies, which are either a standard addition or added by an
application developer. In fact, the interpreter can be viewed as the unifying element of the whole SAND
system (see Figure 4, which isablock diagram of the SAND system).

24 Client/Server Architecture

The SAND interpreter application (i.e., the executable) includesthe SAND kernel codebase, sincetheinter-
preter directly accesses functionality of the kernel. Thus, any application built on top of theinterpreter, such
asthe SAND Browser (see Section 3.1), runsin the same process as the SAND kernel, and displaysmaps on
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Figure 4: A block diagram of the SAND system.

the same computer. Although for many uses, thisis an adequate solution, the proliferation of the Internet
makes it increasingly attractive to provide database access over awide area network. To address this need,
many web-based spatial data providers have adopted the approach of delivering maps asimages, created by
a database server (e.g., www.MapQuest.com and www.MapsOnUs.com). This an appropriate solution for
many applications, and requires minimal resources for both hardware and software on the client side. Nev-
ertheless, the resulting product has severe limitationsin terms of available functionality and response time,
and the transferred images do not have the same flexibility and representational power as the spatial data
itself.

Based on the above considerations, we chose to adopt aclient/server model where the actual datavalues
(including those of the spatial datatypes) are transferred between the client and the server, and the client can
issue queriesto the server. One option would beto exposethe full SAND/Tcl interface to the client, but this
approach would invite a host of potential security risks. Thus, we designed a protocol that provides a more
restricted access to the functionality of the SAND interpreter. The server itself iswritten in the SAND/Tcl
script language, whilewe have devel oped agraphical client, writtenin Java, with functionality that resembles
the SAND Browser (see Section 3.2). In an earlier effort, we also developed an OpenMap server interface
for SAND, in cooperation with USGS[9].

3 Interactive Query Interfaces

In this section, we describe two ways of interacting with the SAND system in a graphical manner (Sec-
tions 3.1 and 3.2), and present examples of their use (Section 3.3).

3.1 SAND Browser

The SAND Browser providesagraphical user interfaceto thefacilitiesof SAND. It permitsthe visualization
of the data contained in a SAND relation by specifying two typesof controls: the scan order in which tuples
are to be retrieved, and an arbitrary selection predicate. The tuples satisfying the query are obtained in an
incremental order. Users rarely need to wait too long to get visual feedback provoked by an action.

1strictly speaking, this is not true for systemsthat support the X windowing system. Nevertheless, relying on X is not aviable
solution for delivering maps over the Internet.



The class of queries currently implemented in the SAND Browser isrestricted to selections and spatial
joins (e.g., distance joins and distance semijoins [18]). The user specifies queries by choosing the desired
selection conditions from a variety of menus and dialog boxes. Spatial values can either be drawn on the
appropriatedisplay paneor typedin by filling forms. Query resultscan either bedisplayedinteractively using
the First and Next buttons or saved in relations for use in subsequent SAND queriesin a manner somewhat
analogous to a spreadsheet.

3.2 SAND Internet Browser

As mentioned in Section 2.4, the SAND Browser is not suitable for interactive map delivery over the Inter-
net. In amore recent effort, we have devel oped another graphical query interface for SAND, that functions
as aclient to the server interface described in Section 2.4. This client interface, termed the SAND Internet
Browser, is built using the popular Java technology, and is arelatively simple and lightweight application.
Using Java provides platform independence while reducing installation and maintenance efforts. Like the
SAND Browser, the SAND Internet Browser is more than anaiveimage viewer, but instead operates on vec-
tor data and allows the client to perform many operations such as zoom in/out or locational queries without
communicating with the server. In essence, the client keepsaloca cache of a portion of the whole database,
which is only updated when additional or newer datais needed.

We see two different types of usages for our Java-based browser. First, the browser can be activated as
an applet so that users across various platforms can access a spatial database on a remote machine without
having to install the SAND system on their side. Second, the browser along with the SAND kernel can be
installed on the client side. In the latter case, the browser can be utilized to view data from remote data
sources, whilefreguently used data can be loaded to thelocal SAND database on demand, and subsequently
accessed locally. Intime, users can build up their ownlocal databasesand makeit availableover the network.

3.3 SampleQueries

Figure5 isascreenshot of what auser interaction with the SAND Internet Browser might look like. 1t shows
the relation corresponding to mortality rates per 100,000 for bladder cancer for white males for the time pe-
riod 1970-1994. We have aso overlaid it with the result of a clustering-like operation that is available in
SAND. In particular, we have shown a partition of the underlying space with respect to the 17 countieswith
the highest mortality rates so that each county in each partition is closer to the county with the high rate in
the same partition than to any other county with a high rate. The green dotsindicate locations of high chlo-
rine emissions obtained from the FedStats [1] website. The goal isto seeif thereis some spatia correlation
between counties with a high incidence of bladder cancer and large chlorine emissions. As can be seen, lo-
cations with alarge amount of chlorine emissions are not clustered around these counties. Thus these two
events do not seem to be spatially correlated.

The scenario depicted in Figure 5 is analogousto a discrete Voronoi diagram and isaform of clustering.
This clustering operation is available in both the SAND Browser and the SAND Internet Browser and can
be achieved by executing an incremental distance semi-join [18] operation where the input relation corre-
sponding to the high chlorine emissions map isjoined with the high incidence of bladder cancer map and the
join condition is based on proximity with the closest tuple pairs from the two sets being retained. Once the
closest emissions-cancer pair (a,b) has been found, the next closest pair is found from the set of emissions
tuples which excludes tuple a from participating. This processis continued until the closest high incidence
of bladder cancer county has been found for each of the high chlorine emissions locations.

Figure 6 illustrates another sample query. In this query, nuclear facilities around a certain monitoring
station along the northeastern U.S. and the Canadian border (Figure 6a) are computed in the order of their
distanceto thisstation. First, we define our query by selecting thelocation of the station and then the ranking
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Figure 5: Sample screenshot of a possible user interaction with the SAND Internet Browser.

The relation being displayed corresponds to classes of mortality rates per 100,000 for bladder
cancer for white males for the time period 1970-1994. It is also overlaid with the result of a

partition of the underlying space with respect to the 17 counties with the highest mortality
rates so that each county in each partition is closer to the county with the high rate in the

same partition than to any other county with a high rate. The green dots indicate locations
of high chlorine emissions.



operation starts by displaying our first hit (Figures 6b and 6¢). By clicking the “Next” button we can con-
tinue this operation as long as we want (Figure 6d). Again, if desired, the nuclear facilities relation can be
partitioned with respect to the monitoring stationsrel ation with a discrete Voronoi diagram (Figure 7).

ey e

¥ ;
i’.
e ] !
=i T —
(a) (b)
- -
T T I = T T I
(c) (d)

Figure 6: The nuclear facilities around a certain monitoring station along the northeastern
U.S. and the Canadian border are computed. The green dots indicate nuclear facilities, the red
dots indicate monitoring stations, and the blue dots indicate hits to our query. (a) Displays the
two relations, monitoring stations and nuclear facilities; (b) the location of a certain station
is chosen for a ranking query by distance; (c) the closest facility is displayed; (d) the query
continues with other hits, incrementally.
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Figure 7: The discrete Voronoi diagram, partitioning the nuclear facilities relation with respect
to the monitoring stations relation, is depicted.

4 Concluding Remarks

SAND isan on-going project. At present, we are focusing on the client/server environment for which our
efforts are in two directions. The first is on developing efficient caching methods that would balance lim-
ited client resources on one side and significant latency of the client/server link on the other while the low
bandwidth of this link would be aconcern in both cases. The second isto help users that want to manipul ate
datafor prolonged periods of time by devel oping a peer-to-peer approach to provide them with the ability to
download fairly large amountsof datamore efficiently by better utilizing the distributed network bandwidth.
In addition, we want to use the same mechanism to help them upload the results of their work to a remote
server if needed.

The classic client/server approach for transferring data between the two ends of a connection assumes a
designated rolefor each of theends(i.e., aclient + aserver). It also ignoresthefact that the needs of the two
ends may be time dependent (i.e., congested periods of usage for the server). A pure peer-to-peer approach
where the two ends/peers can assume both the roles of a client and a server from time to time may improve
the overall network performance by resolving the congested situations. At a given time the server may be
busy serving other requests (forming a congestion). The common solution to this problem in the realm of
databasesisto cache or forward results/requests. The novelty of the peer-to-peer approach is converting the
static configuration of forwarding requeststo a highly dynamic onewhere a persistent storageisformed from
apool of clientsand servers(peers). A request to download/upl oad data can be performed by aset of selected
peers from thispool at agiven time that optimizesthe network performance. Keeping alive and fresh copies
of the data (and hence adirectory of active peers) forms a challenging research problemin thisarea. Hybrid
configurationswhere amain server (e.g., agovernment/company operated server) exists are also possible.

Other work includes adding a map browsing capability to FedStats using the SAND Browser. Thiswork
aso involvesthe construction of a utility that would convert Federal government statistical datain EXCEL
format to be compatiblewith the SAND Browser. In addition, work isongoing to further devel op the concept
of a spatial spreadsheet [20] using the SAND Browser. It isinteresting to note that SAND has already been
used for a prototype image database system [30].
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