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Abstract 
 

This paper examines the effect of air pollution on child hospitalizations for asthma using a unique 
zip code level panel data set.  The effect of pollution is identified using naturally occurring seasonal 
variations in pollution within zip codes. I also improve on past work by analyzing how the effect of pollution 
varies by age, by including measures of avoidance behavior, and by allowing the effect to vary by socio-
economic status (SES). Of the pollutants considered, carbon monoxide has a significant effect on asthma 
hospitalizations among children ages 1 to 18. To assess the importance of these findings, I analyze 
California’s Low-Emission Vehicle II standards and find that nearly 15-20% of the costs from this policy are 
recovered in asthma hospitalizations for children alone. In addition, households respond to information about 
pollution with avoidance behavior, especially high SES families, suggesting that it is important to account for 
these endogenous responses when measuring the causal effect of pollution on health. Finally, the net effect of 
pollution is greater for children of lower SES, indicating that pollution is one potential mechanism by which 
SES affects health. 
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1. Introduction 

 A primary objective of air quality policies around the world is to protect human health. However, 

many critics argue that air quality standards are set somewhat arbitrarily with inconclusive evidence of the 

specific health benefits and with inadequate considerations of the costs to producers. Given that substantial 

costs to industry have been widely demonstrated,1 in order to determine optimal policy intervention it is 

crucial to identify the associated benefits from improvements in air quality.  

 While many studies have focused on estimating a relationship between pollution and health, they 

have largely neglected to consider that pollution exposure is endogenously determined if individuals make 

choices to maximize their well-being.  People with high preferences for clean air may choose to live in areas 

with better air quality.  People can respond to a wide range of readily available information on pollution 

levels by adjusting their exposure.  Failing to appropriately account for such actions can yield misleading 

estimates of the causal effect of pollution on health. 

 This paper focuses on developing an empirical strategy for measuring the effect of pollution on 

health.  Specifically, I look at the effect of air pollution on children's hospitalization for asthma. Childhood 

asthma is of particular interest for two reasons: 1) asthma is the leading chronic condition affecting children; 

and 2) current pollution standards are based on adult health responses to pollution and children face a greater 

risk from pollution exposure due to the sensitivity of their developing biological systems. 

 This study builds on earlier work in five ways. First, I develop a unique, quarterly, zip code level 

data set by matching information about all individual hospitalizations in California between 1992 and 1998 

to ambient pollution levels, meteorological data, and various demographic data.  Second, I identify the effect 

of pollution using naturally occurring seasonal variations within zip codes. Since zip codes are a finely 

defined geographic area and the seasonal patterns in pollution are remarkably strong and diverse throughout 

California, this controls for many confounding factors that might affect asthma hospitalization rates. Third, I 

allow the effect of pollution to differ with the age of the child, as biological models suggest it might.  Fourth, 

I collect data about public announcements of “smog alerts” in order to show empirically that it is important 
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to account for the endogeneity of household responses to pollution.  Fifth, to assess if the effect of pollution 

varies across different segments of the population, I allow the effect of pollution to differ with socio-

economic status (SES), as measured by education levels in the zip code. 

 The primary finding of this paper is that carbon monoxide (CO) has a significant effect on 

hospitalizations for asthma among children ages 1 to 18, while none of the pollutants considered has a clear 

impact on hospitalizations for infants. This discrepancy across age groups is possibly due to the 

complications inherent in diagnosing asthma in infants. To assess the importance of these findings, I analyze 

California’s Low-Emission Vehicle II standards and find that nearly 15-20% of the costs from this policy are 

recovered in asthma hospitalizations for children alone. 

Second, I find that families display avoidance behavior by responding to smog alerts, especially high 

SES families. The announcement of smog alerts decreases asthma hospitalizations by roughly 3 to 6 percent. 

This indicates the importance of accounting for the endogeneity of family behavior when measuring the 

causal effect of pollution on health.  

 Third, not only are the coefficients measuring the effect of pollution larger for low SES children, but 

these children are also exposed to considerably higher levels of pollution. As a result, they suffer greater 

harm from pollution, and higher pollution levels explain roughly 4% of the gap in asthma rates.  Although 

there are many remaining factors for explaining this gap, this suggests that pollution is one potential 

mechanism for the well-known relationship between SES and health -- poorer families are unable to afford to 

live in cleaner areas, and their children's health suffers as a result. 

 The paper is laid out as follows.  Section 2 provides some background information on asthma and its 

potential association with pollution.  Section 3 discusses the economic framework and its implications for the 

empirical analysis.  Section 4 presents the estimation strategy.  Section 5 describes the data used for the 

analysis.  Section 6 presents the econometric results.  Section 7 concludes with a discussion. 

                                                                                                                                                                                                 
1 See, for example, Greenstone (1999) for estimates on the costs of the Clean Air Acts on industrial activity in the 
United States. 
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2.  Background 

 Approximately 5 million children in the U.S. have asthma.  It is the leading specific reason for 

school absence and the most frequent cause of pediatric emergency room use and hospital admission (NIEHS 

(1999)).  Asthma disproportionately attacks children of lower SES, and continues for most well beyond 

childhood (AAP (2000)).  Most disconcerting is that reported asthma rates for children age 18 and younger 

have increased by more than 70 percent from 1982 to 1994 (AAP (2000))2. 

Despite mounting public concern, the factors influencing this illness are not fully understood, 

especially for children.  Medical research has demonstrated that asthma is both a chronic and acute illness.  

In the chronic aspect, an individual’s airways are persistently inflamed and their immune system is hyper-

responsive, but the causes of this remain largely unknown (American Lung Association (2000)).  During an 

acute response, an irritant is inhaled that causes three changes to occur: muscular bands around the 

bronchioles constrict, the linings of the airway become inflamed, and excess mucus is produced.  The 

irritants are believed to cause this because, by being recognized by the immune system as foreign, 

immunoglobin E (IgE), an antibody, is produced in response.  IgE binds with mast cells -- particular cells 

filled with chemical mediators – causing the release of some of the mediators in the mast cells (AAP (2000)).  

As a result of these changes in lung functioning, the airways are severely narrowed, making it difficult to 

breathe.  Such potential irritants, or asthma “triggers”, include molds, pollens, animal dander, tobacco smoke, 

weather, exercise, and outdoor air pollution.   

Many researchers have attempted to link air pollution and childhood asthma, but with mixed results.3 

Most studies have been short time-series that focus on a given city and track the daily number of hospital or 

emergency room (ER) admissions for asthma and the average daily levels of various criteria pollutants.4  A 

wide range of estimated correlations between admissions for asthma and carbon monoxide (CO), ozone (O3), 

particulate matter (PM10), and nitrogen dioxide (NO2) have been reported, with no clear patterns or 

                                                           
2 There is, however, much debate regarding this apparent rise in asthma. I discuss this is more detail below. 
3 Some representative studies include Desqueyroux and Momas (1999), Gouveia and Fletcher (2000), Fauroux et. al. (2000), 
and Norris et. al. (1999). 
4 Criteria pollutants are non-toxic air pollutants considered most responsible for urban air pollution and are known to be 
hazardous to health. They include SO2, NO2, O3, CO, PM10, and lead. 
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magnitude of effects evident.5 

 Due to the inconclusive findings and the fact that ambient air pollution levels have declined in most 

parts of the country while the reported incidence of asthma has risen6, many researchers have begun to 

question the link between ambient air pollution and asthma (von Mutius (2000a, 2000b), Vacek (1999), 

Duhme et. al. (1998)).  For example, the Committee on the Medical Effects of Air Pollution concluded that 

“overall evidence is small that non-biological outdoor air pollution has an important effect on the initiation 

and [provocation] of asthma” (2000).  As a result, alternative theories have sprung up recently.  One theory 

proposes that children are “too clean” because they often use antibiotics to combat minor illnesses.  As a 

result, their immune systems do not develop properly and attack many harmless substances that enter the 

body (AAP (2000)).  A second competing theory is that the changing lifestyles of children – poorer diets, 

less exercise, more time indoors – has led to the increase in asthma related illnesses (von Mutius (2000a)). 

However, not all researchers have dismissed the role that pollution may play.  There is a debate as to 

whether asthma rates have actually increased.  Better detection of asthma and different classifications of 

illness could explain some of the increases in individual and doctor reports.  For example, what was long 

labeled wheezy bronchitis is now classified as asthma (Speizer (2001)).  Recent expansions in Medicaid 

could also explain part of the increase in reported cases -- as children’s access to health care increases, there 

is a greater chance of early detection and treatment.  

Many researchers have also questioned the methodological approaches used to identify the 

relationship between pollution and asthma (Nystad (2000), Eggleston et. al. (1999), von Mutius (2000b), 

Bjorksten (1999)). Since air pollution is not randomly assigned, most studies have been largely unsuccessful 

in disentangling pollution from other confounding factors that affect health. Additionally, these studies do 

not account for direct responses to ambient levels of pollution. Furthermore, these studies tend to group all 

children into just one category, and we might expect a number of biological and behavioral factors to vary 

                                                           
5 Other studies that have attempted to link pollution and general health use data that follow the same individuals over a short 
period of time to control for permanent health-related factors, such as smoking rates and exercise habits (Alberini and 
Krupnick (1998), Portney and Mullahy (1986, 1990)). However, most of these studies focus on adults, and the results may not 
be directly applicable to children. Furthermore, a general limitation of these studies is that, given the limited number of 
observations over a short period of time, it is unlikely that there is enough variation in specific health outcomes to obtain 
precise estimates. 
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for children of different ages. Lastly, most studies conduct single pollutant analyses, which does not provide 

clear policy implications if pollutants are highly correlated. 

A final reason to believe a connection between pollution and asthma might exist is that studies with 

more convincing empirical designs have found consistent effects of pollution on children’s health.  Chay and 

Greenstone (2001) use declines in pollution that resulted from the 1980-82 recession and find a strong link 

between total suspended particles and infant mortality.  Since most infant mortality is due to respiratory 

failure, it is reasonable to suspect that pollution could be related to other respiratory illnesses, such as 

asthma.  Ransom and Pope (1995) use changes in pollution that resulted from the opening and closing of a 

steel mill due to a labor strike and find a large effect on bronchitis and asthma in children.  Their study, 

however, does not identify the effect of specific pollutants, only the effect of the mill being opened or 

closed.7 

3.  Economic Theory 

 One approach to understanding the impact of pollution on health would be to assume that everyone 

is unaware of the amount of pollution in the air.  Therefore, ambient levels of pollution would serve as an 

unbiased proxy for an individual’s exposure to pollution and pollution levels would not be correlated with 

any types of behavior. One could then estimate a relationship between health and pollution by regressing 

health outcomes on ambient levels of pollution as well as other exogenous factors that are related to both 

pollution and health, such as weather conditions. 

 However, this approach is oversimplified because individuals can undertake avoidance activities to 

reduce the effect of externalities, which makes an individual’s exposure to pollution an endogenously 

determined variable.8 This introduces two issues. First, there are many tools available to inform people when 

air pollution levels pose a threat to health. Home devices, such as peak expiratory flow (PEF) meters, can be 

used to measure lung functioning on a given day (if the individual already has a respiratory illness).  

                                                                                                                                                                                                 
6 See footnote 1. 
7 Another study (Friedman et. al. (2001)) that attempts to use a “natural experiment” caused by changing traffic patterns in 
Atlanta during the 1996 Olympics also does not identify the effects of particular pollutants. Moreover, this study does not 
consider the changing behavior of families in response to the Olympics in general. 
8 For a detailed description of avoidance (or averting) behavior, see Zeckhauser and Fisher (1976) or Breshnahan et al. 
(1991). 

 5



California State law requires the announcement of air quality episodes, or “smog alerts”, when pollution 

levels exceed certain limits (Air Resources Board (1990)).  State and local agencies are required to report a 

daily measure of air quality in large metropolitan areas, with newspapers a common source (U.S. EPA 

(1999a)).  Many regional air quality offices, such as the California Air Resources Board, provide web pages 

with up-to-the-minute pollution details and e-mail notifications of dangerous pollution levels.9 Many 

pollutants are directly visible -- on high-smog days in Los Angeles, whitish clouds often cover the sky or a 

reddish-brown haze is visible around the horizon. If people directly respond to this information, then ambient 

pollution levels will not accurately represent their exposure to pollution.  

 A second issue arises because air quality, like many local public goods, is capitalized into housing 

prices, making it an attribute of a home that people can demand (Chay and Greenstone (2000)).  Therefore, 

families with a higher value for cleaner air can locate in areas with better air quality.10  These families may 

also make additional investments in their children’s health -- they may be less likely to smoke or more likely 

to seek preventative health care.  As a result, there are many confounding behavioral factors related to both 

pollution and health, making it difficult to identify the effect of pollution on health.11 

 To understand the empirical implications of such actions for estimating the effect of pollution on 

hospitalizations for childhood asthma, it is useful to think of health endpoints occurring as the result of a 

two-stage decision process: Parents first invest in their child’s health, and then decide the type of health care 

to use if their child’s health condition needs medical attention.12 

Investing in Health 

 This description follows Cropper’s (1977) model closely in spirit, which extends Grossman’s (1972) 

model by incorporating pollution.  The main differences here are that parents invest in their child’s health, 

                                                           
9 For example, visit http://www.epa.gov/airnow/ to find daily pollution levels throughout the United States. 
10 Families do not need to have direct preferences for this attribute.  However, because air quality is an input in the 
health production function, people with preferences regarding health will have implicit tastes for air quality. 
11 This is analogous to the confounding that arises in estimating the effect of school quality on test scores. Parents who 
choose to live in areas with better school quality may also make additional investments in their children, making it 
difficult to identify the effect of school quality. 
12 While hospital data are not ideal for estimating the effect of pollution – it does not include cases where children use 
other sources of care instead – it allows two notable advantages over other reported measures. First, ER admissions are 
an objective measure of asthma. Second, it provides a large number of observations with narrow geographic identifiers 
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rather than their own, and housing purchases enter the model. 

 A child’s health is determined by the following health production function: 

 H = H (P, A, M, W; E)         (1) 

where P is ambient air pollution, A is contemporaneous avoidance behavior that directly affects the child’s 

exposure to pollution, M are other investments in health (such as indoor air filters, medical care, diet, 

exercise, and smoking)13, W are exogenous factors that affect health (such as weather and technology), and E 

is a family specific endowment (such as the child’s existing health stock or the parents’ knowledge of health 

production). 

Note that this is a slightly different treatment of avoidance behavior than in the previous literature.  I 

distinguish between contemporaneous and permanent avoidance behavior by considering contemporaneous 

avoidance behavior a direct response to pollution levels, while permanent avoidance behavior need not be a 

direct response.  For example, the decision to keep a child inside on a high pollution day is a 

contemporaneous response, while the use of an air filtration system on a regular basis (regardless of daily or 

seasonal fluctuations in pollution levels) is a permanent response.  This introduces an important empirical 

implication that is discussed below. 

 Assume the family’s objective is to maximize utility defined over consumption (C), housing 

consumption, and the health of the child.  Using hedonic price methods, we can replace housing consumption 

in the utility function with the attributes of the house, defined here as P and O, where O are attributes of the 

home other than pollution.  Parents choose C, P, O, A, and M to maximize utility subject to (1) and the 

following budget constraint14: 

 I = pCC + F (P, O) + pAA + pMM

                                                                                                                                                                                                

       (2) 

where I is (exogenously determined) income, pj is the time-inclusive price of commodity j = {C, A, M}, and 

 is the (possibly non-linear) price function of the housing attributes. ( )F •

 
to allow the identification strategy (described below) to work. Since ER admissions do not represent all asthma cases, 
this will underestimate the total effect of pollution on asthma. 
13 These factors could also be components of consumption that enter into the utility function of the parent, such as 
smoking. 
14 Letting leisure, parental health, and sick time enter into the model will not affect the main implications given here. 
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 The first order conditions (FOC) for utility maximization for the three choice parameters of interest 

(P, A, and M) imply: 

( )
/

FU U H
P H P P

µ
∂ •∂ ∂ ∂ + = ∂ ∂ ∂ ∂ 

         

 / A
U H p
H A

µ∂ ∂  = ∂ ∂ 
         (3) 

 / M
U H p
H M

µ∂ ∂  = ∂ ∂ 
          

where µ, the Lagrange multiplier for the budget constraint, represents the marginal utility of income. As 

indicated, parents choose the amounts of P, A, and M that equates their benefits and costs on the margin.  

 There are three items worth noting from this model. First, an exogenous increase in pollution (that 

does not induce people to move) will increase the amount of contemporaneous avoidance behavior.  This 

occurs because as P increases, the search costs associated with knowing the amount of pollution decreases 

because P is more visible and/or media reports rise. In addition, the cost of not avoiding pollution has 

increased relative to the cost of avoiding pollution.  Therefore, as pollution increases, the costs from not 

avoiding increase while the price of avoiding decrease, leading to an increase in avoidance behavior.15 

 A second implication from this model, obtained by dividing the first FOC by the third in equation 

(3), is that while the parents’ choice of air quality is clearly related to choices of M, the direction of this 

relation depends on the functional form of U, H, and F.  To see the intuition behind this, we can imagine two 

situations that invoke different responses. On one hand, since P and M are normal goods, wealthier families 

consume “better” levels of both. On the other hand, if P is bundled with other components, such as school 

quality and crime rates (the non-linearity of F), then in order to purchase lower levels of air quality they must 

compromise by choosing less M. 

The third insight is that families that are more knowledgeable in health production face a lower price 

for health (pA or pM).  As a result, they will invest larger amounts in their children’s health by choosing 

“better” quantities of A or M, such as less tobacco smoke, better indoor air quality, or healthier diets.  
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Similarly, parents will make larger investments in children with lower health stock, such as younger children.  

This arises because younger children face a greater risk from pollution exposure than older children (
H
P

∂
∂

 is 

higher) and/or it is less costly to monitor the behavior of younger children (pA and/or pM is lower).  For 

example, it is not uncommon for parents to insist on keeping tobacco smoke away from their infant only to 

become more yielding about limiting tobacco smoke as the child grows older.  This finding, combined with 

the second prediction described above, suggests that a child’s exposure to pollution is correlated with the 

family specific endowment. 

Health Care Utilization 

If the child’s health has crossed a certain threshold (h) and some type of health care is required, the 

parent must decide how to manage the situation.  In the case of asthma, if the child has already been 

diagnosed as asthmatic and has the necessary medication, the family may be able to manage the attack 

successfully and need no further attention.  If they do not have medication, or the attack is severe enough that 

it requires additional medical attention, the family must decide on the type of care to use.  If the family has 

an existing relationship with a private doctor, they may initiate care through the doctor.  However, if the 

family has little or no prior contact with a doctor, their only option is to go to the hospital.   

If these choices depend on the characteristics of the family or the health of the child (E) and families 

choose the type of care that maximizes utility, we expect heterogeneous responses to asthma attacks to arise. 

For example, infants have a greater chance of respiratory failure because of their smaller airways and higher 

airway resistance (Letourneau et. al. (1992)), suggesting that pollutants may have a greater impact for this 

age group. Additionally, typical care for infants can vary considerably from care for older children. This 

arises because life-threatening symptoms that require emergency care can quickly develop from respiratory 

illnesses for this age group, such as asthma (Institute of Medicine (1993)). For this reason, infants with 

respiratory distress require immediate attention (Letourneau et. al. (1992)) and are typically given the highest 

priority for care (Institute of Medicine (1993)). Additionally, although devices such as peak expiratory flow 

(PEF) meters are usually part of home-management plans for asthma, these devices are unavailable for 

                                                                                                                                                                                                 
15 This assumes that levels of outdoor pollution are not perfectly correlated with levels of indoor pollution. 
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infants (AAP (1999, 2000)). Therefore, infants are more likely to have treatment for asthma initiated through 

the emergency department regardless of investment strategies or preferences for type of care. 

Additionally, parents who are more efficient investors in health may be more likely to seek 

preventative care, increasing the odds of diagnosing asthma.  We therefore might expect them to be more 

likely to manage an attack themselves or to have an existing relationship with a doctor, reducing their 

likelihood of using a hospital for an asthma attack.  Since the characteristics of the family are related to the 

child’s exposure to pollution (as shown above), this suggests that the choice of hospitalization is also 

potentially correlated with the child’s exposure to pollution. 

 To develop a statistical equation from this model to estimate, I combine the decision process in the 

following way: a parent chooses to invest in their child’s health, and then H is revealed. If H crosses the 

threshold such that additional care is needed to restore H, the parent will choose the hospital as the source of 

care if the utility from choosing the hospital exceeds the utility from other options. Therefore, we can view 

the probability of going to the hospital for an asthma attack, Pr (Y), in a random utility framework: 

 Pr (Y) = Pr (HP | H > h, P, A, M, W, E) = Pr (UHP=1 > UHP=0)    (4) 

where Pr (H > h) is the probability an asthma attack has occurred, Pr (HP) is the probability of using the 

hospital as the source of care, and UHP is the utility associated with the type of care chosen. 

4.  Estimation Strategy 

The above section suggests that all variables in (4) are potentially related to the child’s exposure to 

pollution, indicating that there will be an omitted variable bias if they are not observed.  Given that these 

variables are difficult to observe, I instead propose to control for these variables using the following 

innovations.  First, I look at the effect of air pollution separately for children of different age groups.  These 

groups correspond with both biological development and the type of care that families typically display 

towards children.  I define the age categories of interest as follows: children age 0-1 (lung “branching” 

occurring at rapid rate; infants most protected by parents and most likely to use hospital for illness); 1-3 

(alveoli develop and mature; children spend more time in day care); 3-6 (children more likely to enroll in 

preschool/kindergarten); 6-12 (elementary school); and 12-18 (secondary school).  This will allow for 
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different potential biological and behavioral responses to pollution by the age of the child. 

 Second, by creating quarterly time-series data at the zip code level, I define the unit of observation as 

the zip code/quarter and specify a zip code fixed effect (FE). This will capture permanent observed and 

unobserved factors within a zip code that affect health, such as average smoking rates, average indoor 

pollution levels, and average health care decisions to the extent that they are constant over time or do not 

change in ways that are correlated with pollution.  Since the zip code is a finely defined geographic area with 

frequent social interactions amongst residents, the zip code FE will capture a large share of potentially 

omitted characteristics.  

 The third innovation comes from using the diverse seasonal variation in pollution in California that 

arises from local microclimates and geography.  While it is plausible that there are seasonal changes in health 

behavior that are correlated with changes in pollution, the key factor is that these seasonal variations in 

pollution are different throughout California depending on the unique physical characteristics of each area. 

For example, levels of ozone increase in the summer at a greater rate because ozone is formed in the 

presence of sunlight.  Particulate matter is trapped by fog in winter weather.  CO levels increase in cold, 

stagnant weather.  Figure 1 shows the strong seasonal patterns of these pollutants.  Furthermore, ozone 

increases at a greater rate in the summer in hotter and sunnier areas, such as southern and central California.  

PM10 increases in drier areas in the summer and fall, but increase in colder areas in the winter because of 

increased use of combustion sources (Nystrom (2001)).  To highlight some of this diversity, figure 2 shows 

quarterly pollution levels for coastal counties in southern California, an area where we might expect similar 

seasonal variations in health behavior. For example, these areas face comparable weather patterns and have 

access to similar seasonal foods. Ventura, Los Angeles, and San Diego all have comparable mean levels of 

O3; however, the quarterly variation in Los Angeles is considerably greater than the other two. Orange 

County has a lower mean level of O3 than San Diego, but the variation in Orange is greater.  Since these 

patterns in pollution vary throughout California and are naturally occurring, it is reasonable to assume that it 

is independent of many seasonal investments in health. 
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 In sum, I will compare how seasonal changes in pollution within a given zip code affect changes in 

seasonal asthma rates for a specific age group.16  The following example of smoking rates and outdoor 

pollution highlights how the empirical strategy works.  Failing to control for smoking is only a problem if 

smoking behavior is related to both pollution and asthma.  By looking at separate age groups, I circumvent 

the need to control for how parents monitor tobacco smoke around their children based on the age of the 

child.  By using zip code fixed effects, I look at whether changes in pollution are linked to changes in asthma 

within a zip code.  If smoking either doesn't change with changes in pollution, or if it changes in a way that is 

unrelated to changes in pollution, then the fixed effect would control for smoking behavior.  Smoking 

behavior, however, may change over time or within a year.  If this is the case, the fixed effect will not 

capture the changing smoking patterns.  However, if smoking patterns do not change from one season to the 

next in a way that is correlated with the seasonal changes in pollution unique to that area, then I will not need 

to explicitly control for smoking behavior. 

 While this identification strategy overcomes many problems, there is one main source of 

endogeneity that remains -- contemporaneous avoidance behavior.  Since people can directly respond to daily 

pollution, this will not be captured by the identification strategy.  Although I include some measures of 

avoidance behavior, these measures only capture part of avoidance behavior and only as it relates to ozone. 

However, as shown in the economic model, contemporaneous avoidance behavior is positively related to 

pollution levels.  If avoidance behavior lowers the likelihood of having an asthma attack, omitting it will 

yield a lower bound of the true effect. 

 To see the identification strategy more formally, from equation (4), replace Pr (Y) with the 

expectation of its relative frequency, E (Yz / Nz), because, by using hospital admissions, I only observe Y if Y 

= 1. The subscript z denotes a zip code level value and N is the population in zip code z. Assume E (Yz / Nz) 

is a linear function of the covariates: 

 0 1 2 3 4
z

z z z z
z

YE P A M W
N

β β β β β+
  = + + + 
 

zE

                                                          

      (5) 

 
16 One notable limitation of using seasonal changes in pollution is that, by smoothing out daily variation, some valuable 
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The main problem in estimating this equation is that Az, Mz, Wz, and Ez are difficult to fully observe. 

However, given that there are repeated observations for a zip code over time, I include a zip code fixed effect 

(αz) to capture permanent observable and unobservable components of these variables.  Since Az, Mz, Wz, and 

Ez also have contemporaneous components, rewrite (5) as: 

 0 1 2 3 4
zyt

zyt zyt zyt zyt zyt z t
zyt

YE P A M W E
N

β β β β β α+
  = + + + + 
 

η+

)
0

0

0

)0

    (6) 

where the subscripts y and t indicate year and season, respectively, and ηt is a seasonal fixed effect. While 

some measures for Azyt, Mzyt, Wzyt, and Ezyt exist, it is unlikely that I can adequately measure all of them. 

However, using unique seasonal variation in pollution assumes the following: 

         (7) 
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where * is the unobserved component. That is, after controlling for permanent factors via a zip code fixed 

effect and seasonal factors via a seasonal fixed effect, seasonal changes in pollution within a zip code are 

unrelated to unobserved seasonal changes in Mzyt, Wzyt, and Ezyt. This is the fundamental identification 

assumption of this model.   

 Additionally, using the first prediction from the model, we expect the following to hold: 

          (8) 
( )*

1

, | ,

0

zyt z tzytP Aρ α η

β ≤

≥

That is, contemporaneous avoidance behavior is positively related to pollution and improves health (by 

lowering the likelihood of an asthma attack). It is straightforward to show that (0 Eβ β≤ , meaning the 

estimate for β0 will be a lower bound of the true effect. 

 It is worth highlighting the potential impact from omitting contemporaneous avoidance behavior 

because responses are likely to vary by the pollutant – some pollutants are more “recognized” than others.  

For example, ozone has been a pollutant of major focus because its concentration often exceeds the National 

                                                                                                                                                                                                 
information may be lost. Additionally, using seasonal variation will not provide evidence on long-term health effects. 
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Ambient Air Quality Standards (NAAQS) as outlined in the Clean Air Acts.  As a result, these exceedances 

are reflected in various media sources, raising public awareness of ozone levels. The following chart lists the 

main pollutants considered in this analysis17 and their sources for recognition.18 

Pollutant Emission Sources Violations of NAAQS Direct Detection 
O3 Automobiles and industrial 

sources, reacts in sunlight and heat 
Frequent violations Major component of 

visible urban smog 
CO Automobiles Some violations Odorless and colorless 
PM10 Directly emitted and formed from 

other pollutants 
Some violations Reduces visibility 

NO2 Automobiles and stationary fuel 
combustion sources 

Little or no violations Odor and visible at 
moderate levels 

 
 To proceed with estimation, to insure that asthma rates are bounded below by 0, I adjust equation (6) 

by exponentiating the right-hand side, and distributing and parameterizing population to get: 

 ( ) 0 1 2 3 4 5exp{ ln }zyt zyt zyt zyt zyt zyt zyt z tE Y P A M W E Nβ β β β β β α+= + + + + η+ +   (9) 

This is now equivalent to a Poisson regression with arrival rate ( )zyt zytE Yλ = .19  β0 is the coefficient vector 

of interest.  The main hypothesis to test is whether β0 = 0, namely that pollution has no effect on asthma 

hospital admissions. 

5.  Data 

Sources 

 The California Hospital Discharge Data (CHDD) is a rich source of individual health outcomes.  

This data set records the principal diagnosis of the patient upon release from the hospital20, the month of 

                                                           
17 In an earlier version of this paper, I included sulfur dioxide (SO2) in the analysis. I omit SO2 in this analysis because 
1) there are very few monitors for SO2, which makes it difficult to accurately assign exposure to SO2 without significant 
reductions in sample size and 2) current levels of SO2 are widely believed to be low enough such that they do not pose a 
threat to health. Since SO2 primarily comes from stationary sources and as a result is not highly correlated with the other 
pollutants considered, omitting SO2 did not affect estimates of the other pollutants. 
18 In addition to sources that target a wide range of audience, there are individual specific avoidance possibilities. For 
example, PEF meters are a widely prescribed part of asthma treatment plans (AAP (2000)). Families can use these 
devices to gauge lung functioning on any given day, regardless of what they may know about pollution levels. However, 
since PEF meters are unavailable for infants, they should not interfere with estimation for this age group. 
19 There are alternative ways to motivate this as a Poisson regression. See Portney and Mullahy (1986) for one 
alternative.  To test the validity of the Poisson assumption, I also estimated a linear model and an ordered probit model 
for (6). Additionally, I estimate models with a zip code/year fixed effect to allow for zip code specific trends. The 
results were comparable across all specifications. 
20 This is assigned according to the International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-
CM) by the U.S. Department of Health and Human Services. 
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admission,21 the zip code of residence, as well as the sex, race, age, and the expected source of payment for 

all individuals discharged from a hospital in the state of California.  Data are available from 1992 to 1998 

and each year contains on average over 800,000 hospital discharges for children under age 18 (not including 

newborns).  

 While hospital data does not include information on all asthma attacks, the CHDD offers three key 

advantages over self-reported surveys.  First, hospital discharges, in particular ER admissions, are a more 

objective measure of asthma and are less likely to be sensitive to reporting biases.22  Second, there are a large 

number of observations available each year in the CHDD. Third, having the zip code of the patient enables 

me to specify a zip code fixed effect and to merge other key data sources at the zip code level. 

 The key data merged are atmospheric pollution levels from Environmental Protection Agency (EPA) 

air monitoring stations throughout California. The monitor data are readily available from 1982 until the 

present and are the most detailed data recording ambient levels of criteria pollutants.  Furthermore, they 

contain the exact location of the monitor, enabling them to be merged with the CHDD.  Figure 3 shows O3 

monitors in California in 1999 along with county outlines.  These monitors are mainly located in the more 

densely populated areas (shaded in gray).  Figure 4 highlights Los Angeles County, showing again O3 

monitors and now the outlines of zip codes.  Since Los Angeles is a diverse county both demographically and 

geographically and there are many monitors to capture local pollution levels, assigning pollution at the zip 

code level should produce more reliable measures than from assigning it at a broader level. 

 I also merge other data sources at the zip code level.  Monthly meteorological data from the National 

Climatic Data Center contains various measures from more than 1000 weather stations in California as well 

as their exact location.23 The California Association of Realtors provides monthly zip code level information 

on the number of homes and average and median sales price from 1991 to the present.24 Using 1990 Census 

estimates of population counts by age for each zip code and annual county estimates by age from the 

                                                           
21 The exact day of the month is censored in the version of the data that has already been released to me. Only an indicator for 
the day of the week is available. 
22 ER admissions account for approximately 67% of all hospital admissions for asthma. 
23 The meterological data are merged using the same inverse-distance weighted technique used to approximate zip code levels 
of pollution (described below). 
24 Since both the meteorological and housing data are available monthly, I average them to a quarterly level. 
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Demographic Research Unit of the California Department of Finance, I have approximated the annual 

population for each zip code and age group. 

 As proxies for avoidance behavior, I merge the number of smog alerts announced in each quarter.  

Air quality episodes, or “smog alerts”, are required by California law to be issued by local air quality 

management districts25 when criteria pollutants exceed levels as specified by the California Air Resources 

Board. When this occurs, schools are directly contacted and are urged to limit physical activities for children 

until pollution levels ease, while other sensitive people are advised to avoid the pollution by remaining 

indoors (Air Resources Board (1990)).  While these advisories are required to be announced for all of the 

criteria pollutants, historically announcements have only be made for ozone levels, and as a result the 

advisories are commonly referred to as “smog alerts.” 

Linking Pollution 

To approximate a quarterly time-series of pollution at the zip code level, I first calculated the 

coordinates for the centroid of each zip code in California.  Using the reported coordinates of the EPA 

monitors, I then measured the distance between each centroid and each monitor.  Finally, I calculated the 

level of pollution for a zip code by averaging reported values from all monitors within 20 miles of the 

centroid, weighting by the inverse of the distance from the centroid to the monitor.26 Therefore, I define 

pollution in zip code z at time t as: 

1 1* /
| 20 | 20

zyt jyt
j j j jj

P P
D D D D

  
=   ≤ ≤  
∑ 




                                                          

      (10) 

where Dj is the distance from monitor j to the centroid of zip code z and Pjzt is the pollution measure at 

monitor j in year y in season t. 

 Four immediate issues arise in measuring pollution in this way.  First, many monitors have been 

added or removed over the time period studied.  This occurs because pollution monitors are installed in areas 

where pollution exceeds NAAQS, but can also be removed from an area if it falls below NAAQS (U.S. EPA 

 
25 There are currently 17 air quality management districts in California. 
26 To test the sensitivity of this assumption, I also changed the radius to 10 and 5 miles and used only zip codes where a 
monitor exists. Although these different measurements greatly affected the sample size, they did not affect the main findings. 
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(1999b)).  As a result, monitors are more likely to be placed in areas where pollution levels have been 

increasing, and less likely to exist in areas where pollution has been declining.  To assess the implication of 

this, I estimate (10) in two ways: using all monitors from 1992 to 1998 and using only continuously operated 

monitors from 1992 to 1998.  Appendix table 1 shows the number of monitors over time for both methods 

and the correlation between quarterly zip code levels of each pollutant calculated by each method.  The 

overall number of monitors has not changed considerably and the correlations for all are at least 0.98, 

indicating that the sampling technique used for monitors should not interfere with inference.27 

 Second, while it is crucial to control for multiple pollutants simultaneously, trying to separately 

identify the effect of each pollutant can be difficult if pollutants are highly correlated.  Many pollutants 

originate from similar sources, as the preceding chart indicated.  Appendix table 2 shows the correlation 

matrix for the pollutants considered here. O3 does not appear highly correlated with any other pollutants, 

while NO2 appears highly correlated with CO and PM10.  This may make it difficult to obtain precise 

estimates for NO2.28 

 Third, there are many factors that affect how pollutants travel, such as wind, rain, and the size of the 

pollutant particle, and this may affect how well (10) measures the actual pollution concentration29.  For 

example, particulate matter, such as PM10, settles to the ground at a much quicker rate than do gaseous 

pollutants (Wilson and Spengler (1996)).  To get a sense of how accurate the above approach is, I estimate 

the level of pollution at each monitor (as opposed to zip code) using the above formula as if the monitor of 

interest were not there.  Therefore, I estimate the amount of pollution at a given monitor based on the 

pollution levels at monitors less than 20 miles away.  I do this for all monitors and then calculate the 

correlation between the estimated pollution and the actual pollution, shown in appendix table 3.  The 

correlation for O3 and NO2 are remarkably high.  This is not surprising since both pollutants are formed in 

                                                           
27 For SO2, the number of monitors fell from 62 to 38 over this period, with 35 continuously operated. 
28 When including SO2 in the correlation matrix, the correlation between SO2 and O3, CO, PM10, and NO2 are .01, .34, 
.20, and .36, respectively. The other rows of the correlation matrix remain nearly identical. 
29 While I obtained measures of precipitation to include in the analysis, wind data is not as widely available. Furthermore, it is 
unclear exactly how to incorporate wind data. 

 17



the atmosphere, as opposed to being direct products of emission.  For PM10 and CO, the correlations are 

slightly lower, but are still high enough that it does not appear to be a major concern.30 

 Fourth, since monitors tend to exist in more polluted and populated areas, it is important to 

understand how the characteristics of the population in these areas differ from those that are excluded from 

the analysis.  Appendix table 4 shows various demographic characteristics for zip codes that are within 20 

miles of a monitor for each of the pollutants and zip codes that are not.  While all of the variables shown are 

statistically different, the driving force behind these differences appears to be the percent of the population of 

the zip code that lives in urbanized areas.  This coincides with the monitor locations shown in figure 3.  Since 

rural areas represent a much lower fraction of the population, omitting them is not likely to affect the results 

considerably. 

Trends and Descriptive Statistics 

Table 1A shows the descriptive statistics of the data used in the analysis, including the “between” 

and “within” zip code variation of each variable.31 For the pollutants, it is not unusual for the seasonal within 

zip code variation to exceed the between zip code variation, as is the case for O3 and CO.  For asthma 

admission rates32, younger children have a greater likelihood of visiting the ER33, with infants approximately 

6 times more likely to visit the ER than children over 6 and 1-6 year old 1.5 times more likely to visit than 

children over 6.  Most of the variation in asthma rates comes from within the zip code.  The patterns in 

variation for asthma and pollution suggest ample variation for obtaining precise estimates using the 

identification strategy described above. 

Table 1A also shows variables that represent Azyt, Mzyt, Wzyt, and Ezyt.  House prices are designed to 

reflect changes in asset wealth and are a “sufficient” statistics for many demographics of a given area, such 

as school quality and crime rates. The percentage of newborns with government sponsored health insurance 

(calculated from the CHDD) is used as a measure of changes in income.34  The percentage of normal 

                                                           
30 For SO2, the correlation is only 0.59, indicating the potential mismeasurement that arises in using SO2. 
31 The “between” standard deviation is calculated usingxi  and the “within” is calculated using xit –xi +x. 
32 Asthma is labeled as ICD-9-CM 493. 
33 ER admissions are distinguished from other admissions according to the “source of admission” variable from the CHDD. 
34 There was only one expansion in medicaid eligibility that affected newborns during the time period studied. In February of 
1995, eligibility was extended from 185 to 200 percent of the federal poverty level. Although Access to Infants and Mothers 
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newborns (calculated from the CHDD35) is used to approximate the health stock for infants.  Hospital 

admissions for influenza are included to control for co-morbidities. Average maximum temperature and 

inches of precipitation both affect the likelihood of being outdoors and may directly exacerbate asthma 

symptoms (American Lung Association (2001)).  Additional controls not shown in the table are seasonal 

dummies, which attempt to capture children’s time outdoors as dictated by school schedules, and annual 

dummies, designed to capture general changes in factors that affect asthma that are common to all groups, 

such as technological changes in prevention, treatment, and labeling of asthma. 

 Since asthma disproportionately attacks children of low SES, table 1B shows pollution levels and ER 

asthma rates for two SES groups.  I define SES groups as above and below the median for the percent of 

adults over 25 years old in a zip code without a high school diploma. The average levels of all pollutants are 

higher for the low SES groups.  Asthma rates for low SES are almost twice as high as high SES for children 

under age 6, and approximately 50% higher for children over age 6.  These differences in pollution and 

asthma rates by SES are statistically significant.36 

Table 1C shows cumulative counts of ER asthma admissions by age group.  For every age group, 

most of the counts are either 0, 1, or 2, and 99% percent of the counts are under 6.  The highest count for any 

age group is 20.  These numbers support the appropriateness of a count-data regression model, such as the 

Poisson model. 

 In turning to annual trends, figure 5 shows annual ER asthma rates for the various age groups.  The 

admission rates appear relatively stable over time for infants and 6-12 year olds except for upward spikes in 

1995 and 1997.  For the other groups and averaged across all age groups, rates have generally gone down 

over time, also with spikes in 1995 and 1997.  To compare asthma patterns in California with those 

elsewhere in the U.S., figure 6 shows all hospital admissions for asthma for children in California, the entire 

                                                                                                                                                                                                 
(AIM) also increased during this period, less than 0.6% of all births in California are paid for by AIM (Managed Risk Medical 
Insurance Board (2001)). 
35 In the CHDD, newborns are classified into one of the following seven categories: 1) died or transferred 2) extreme 
immaturity or respiratory distress syndrome 3) prematurity with major problems 4) prematurity without major problems 5) full 
term with major problems 6) neonate with other significant problems and 7) normal newborn. 
36 These patterns are also present when SES is defined by race or income. 
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U.S., and each region of the U.S. using the National Hospital Discharge Survey (NHDS).37 The northeast has 

the highest admission rate, followed by the Midwest, the south, and then the west.  The pattern for California 

is similar to that for the entire U.S., but at a level that is almost 50% lower.  In turning to quarterly patterns, 

figure 7 shows asthma patterns over time for each age group separately.  Immediately evident are the strong 

seasonal patterns for admissions for all age groups.  Rates for each age group increase on average anywhere 

from 1.5 to 2.5 times from the lowest quarter to the highest.  Furthermore, the seasonal patterns differ across 

age groups.  The high season for infants is the 1st quarter, whereas high season for teens is the 4th quarter.  

These striking patterns demonstrate the importance of looking at age groups separately and the potential 

value in exploiting seasonal variation. 

 Before turning to the estimation, a case study of a specific zip code highlights the main findings of 

this analysis. Figure 8 plots quarterly standardized pollution levels and asthma counts for children ages 1-3 in 

zip code 92410 (San Bernardino). A strong pattern between asthma and CO emerges, with peaks and trough 

occurring at roughly the same time throughout the entire time period.  While at times asthma follows the 

patterns of other pollutants, the pattern tends not to persist for the entire time period, indicating a potential 

link between CO and asthma. 

6.  Results 

Main Results 

The first set of results, fixed effect estimates of equation (9) without any direct controls for 

avoidance behavior, indicate that pollution has a differential impact on infants as compared to older children.  

As indicated in table 2A,38 NO2 is significant and positively related to asthma ER hospitalizations for infants.  

However, for all older age groups, CO is positive and significantly correlated with asthma. One explanation 

for the difference across age groups is that asthma is often difficult to precisely identify in infants because of 

communication limitations, little history of respiratory illnesses, and birth complications (Letourneau et. al. 

(1992)).  Although the biological plausibility of a direct effect of CO on asthma is unlikely, because CO 

                                                           
37 The NHDS does not provide information to separately identify emergency and non-emergency hospital admissions and the 
only geographic identifier is the region. 
38 For ease of interpretation, all pollutants have been standardized to have a mean of zero and standard deviation of one. 
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mainly comes from vehicle exhaust, a likely explanation is that CO functions in these models as a proxy for 

vehicle emissions (U.S. EPA (2000)). 

 In terms of the control variables, temperature does not appear to be significantly related to asthma, 

while precipitation is generally negatively correlated with asthma, suggesting that increases in rain may 

lower children’s exposure to pollution by increasing their amount of time spent inside or by “cleaning” the 

air (Wilson and Spengler (1996)).  Influenza has a positive effect on asthma admissions, which is consistent 

with co-morbidity theories. The coefficients for the demographic variables are almost always imprecisely 

estimated.  Since these variables often have significant effects on health outcomes, this suggests that the zip 

code fixed effects appear to control for a large amount of observed as well as unobserved heterogeneity. 

 While the presence of negative coefficients for O3 in table 2A may at first seem surprising, not 

controlling for contemporaneous avoidance behavior yields estimates that are lower bounds of the true effect.  

Furthermore, if people respond to an increase in pollution by increasing avoidance behavior to the point that 

health actually improves, it can induce a negative effect.  The following diagram illustrates how negative 

effects could arise for O3. 

 

 

 

 

 

 

 
 T = true dose-response 
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 E = estimated dose-response 
 A = avoidance behavior 

When ozone exceeds 20 ppm, a smog alert is announced. If schools or parents respond by keeping their 

children inside, children may exercise less as a result. Since exercise is believed to induce asthma and is not 

directly observed, by omitting A I would estimate line E instead of T, yielding a spurious negative effect of 
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O3 on asthma hospitalizations. Although this diagram assumes that ozone has no effect on asthma, the same 

effect could occur if ozone has a positive effect on asthma. 

 To test the impact from omitting avoidance behavior, I add to the model the number of smog alerts 

announced in each quarter.  Since smog alerts are only announced with respect to O3, this only tests how 

estimates for O3 changes. The results from including this variable, reported in table 2B, show that smog 

alerts have a strong negative effect on asthma admissions for all age groups except the oldest, supporting the 

notion that avoidance behavior is actively undertaken. Meanwhile, the negative effect for O3 almost entirely 

disappears and there are no qualitative changes in the other pollutants. Since O3 has no effect on asthma 

admissions, in order for smog alerts to have a negative effect on asthma admissions children must be doing 

something in addition to avoiding pollution that reduces the likelihood of having an asthma attack, such as 

exercising less.39 However, it is possible that additional controls for avoidance behavior with respect to O3 

could uncover a positive effect of O3 on asthma hospitalizations.40 These results support the notion that 

omitting avoidance behavior induces a lower bound of the biological effect of pollution on health. 

 An additional concern with these estimates is that by controlling for pollutants simultaneously it may 

be difficult to separately identify the effects of each pollutant. For example, as mentioned in the data section, 

NO2 and CO are highly correlated pollutants because both are products of automobile exhaust. Table 3 shows 

estimates from single-pollutant models. The results indicate that CO continues to have a significant effect on 

asthma while NO2 does not have any effect, suggesting that CO is more dominant than NO2 in affecting 

asthma. 

 An important issue to explore is whether the effect of pollution on asthma is the same for all subsets 

of the population. Some groups, such as children with low health stock, may face different risks from 

comparable levels of pollution. Additionally, as table 1B shows, pollution levels and asthma rates are higher 

for children of low SES. To assess the importance of this, I run separate regressions for the SES groups as 

                                                           
39 An alternative interpretation of these results is that smog alerts are proxying for high levels of O3. This interpretation 
seems implausible because it suggests that low levels of O3 have no effect on asthma admissions but high levels of O3 
reduce the number of admissions. 
40 Additionally, including avoidance behavior controls specific to the other pollutants can increase the magnitude of the 
coefficients for those pollutants. However, as the chart on p. 14 indicates, I expect most avoidance behavior with respect 
to O3. 
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defined in table 1B.41 There are two items worth noting from these results, shown in table 4. First, although 

the effect of CO is only statistically different across SES groups for children ages 3-6, the results suggest that 

the impact of CO is in general larger for children of low SES, providing one possible explanation for some of 

the differences in asthma rates by SES. Second, the effect of smog alerts is smaller for children of low SES, 

with statistically significant differences for children ages 6-12 and 12-18. This suggests that avoidance 

behavior is less actively undertaken by low SES families, and could also explain some of the difference in 

asthma rates by SES. 

Magnitude of Findings 

 To get a sense of the magnitude of the main findings, I perform a basic cost-benefit analysis of 

California’s Low-Emission Vehicle (LEV) regulations. The first LEV regulations, introduced in 1990, 

required automobile manufacturers to offer a certain percentage of their fleet meeting specific emissions 

tiers, and for these percentages to become increasingly geared towards lower emission tiers over time.42 LEV 

II standards were introduced in 1998 with the purpose of introducing more stringent emissions requirements 

(Air Resources Board (1998)). A simple analysis of LEV II is of particular interest for two primary reasons: 

1) CO primarily comes from vehicle exhaust, so we might expect changes in emissions standards to have an 

impact on asthma hospitalizations; and 2) although California frequently imposes higher environmental 

standards than federally required, these regulations have come under attack by the current administration 

(Yost (2002)).43  

 Determining the costs associated with LEV II standards consists of the following steps. First, using 

the number of vehicles on the road in California in 1998, assume the fleet of vehicles is stable for all years 

into the future (f).44 Second, multiply this by the tiers defined in LEV II for each year (tcy) to get the number 

of cars that fall into each emission category. These values are reported in table 5, panel A. Third, multiply 

                                                           
41 I also performed this analysis by defining SES according to minority population and income, and the results were 
comparable. 
42 These tiers include LEV II, ULEV II, SULEV (super-ultra low emission vehicle) and ZEV (zero-emission vehicle). I 
omit ZEVs from the analysis because the costs for upgrading to ZEV are not readily available and the final percentage 
requirement is under debate. 
43 Because many assumptions are necessary to offer results, wherever possible I make assumptions that err on the side 
of underestimating benefits while overestimating costs. 
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this by the incremental costs to upgrade the exhaust system (uc)45, reported in panel B of table 5, to determine 

the overall costs to consumers in each year (Cy) 46: 

 Cy = f * tcy * uc.         (11) 

This yields the annual costs to all consumers from upgrading exhaust systems to meet the emissions 

standards, reported in column 3 of table 5D. 

 Determining the benefits from reduced emissions requires finding the reduction in pollution from 

LEV II, its effect on asthma admissions, and the monetary savings from reduced admissions. To find the 

change in pollution, first multiply the number of cars in each emissions category in each year from table 5A 

by the lifetime amount of emissions for the corresponding category. I do this for two major types of 

emissions: reactive organic gas ( e ) and oxides of nitrogen ( ). Second, compare the lifetime 

emissions for each year both with (w) and without (o) the LEV II standards in place to find the percentage 

reduction in emissions for each year (p
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Third, multiply these percentages by CO levels in 1998 (CO98) to obtain future levels of COy.47  

 To find the effect of different pollution levels on asthma admissions for each age group, measure the 

percentage change (δa) in asthma hospitalizations from changes in pollution levels over time: 

 δa = (λ98 - λy) / λ98        (13) 

where λ98 and λy  are the arrival rates for asthma hospitalizations with 1998 levels of pollution and future 

levels of pollution, respectively.  Using equation (9) for λ, rewrite (13) as: 

 δa = exp {β0a * (CO98 – COy)} - 1       (14) 

                                                                                                                                                                                                 
44 This assumes, among other things, no response in demand from the price increase from the higher standards. A 
decrease in demand would lower the total costs to consumers and raise pollution levels.  
45 Note that this assumes that the costs for upgrading stay constant over time, although evidence indicates that it 
typically reduce over time. 
46 This includes LEV II, ULEV II, SULEV (super-ultra low emission vehicle) and ZEV (zero-emission). Because I 
don’t have incremental costs for upgrading to the LEV II category, I assign these vehicles to the ULEV II category. 
Furthermore, the costs for upgrading to ZEV are not readily available because this mainly consists of a new engine 
design, whereas the other upgrades consist of adjustments to existing exhaust systems.  
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where β0a is the coefficient of the effect of CO on admissions for each age group.48  

 To determine the monetary savings associated with the decrease in admissions, multiply the 

percentage change in asthma admissions by the actual number of admissions in each age group (Ya) and the 

corresponding average cost of hospitalization (hca), reported in panel C of table 5. After aggregating across 

age groups, this yields an estimate of the cost of illness (COI).49 Next, adjust the COI to reflect willingness to 

pay (WTP) by multiplying it by 2.65, the average ratio of WTP to COI from published studies (Alberini and 

Krupnick (2000)). Finally, since recent research has shown that parents’ WTP for their children’s health may 

differ from their own, multiply the savings by 2.5 as reported by Blomquist et al. (2002). This yields net 

benefits per year (By) of: 

 By =∑a { δa * Ya * hca } * (WTP/COI) * (WTPchild/WTPadult)   (15) 

These are reported in column 4 of table 5D.  

 In comparing the benefits to costs, column 5 of table 5D shows the annual benefit-cost ratio. The 

results indicate an initial ratio of 23% that slowly declines until the fifth year the program is in effect. After 

that point, the ratio slowly increases to 21%, at which point it remains level because the entire fleet will be 

comprised of the final schedule required by LEV II standards. It is important to note that these benefits do 

not capture many additional factors related to pollution, such as asthma not diagnosed in the hospital, asthma 

episodes in people over age 18, other illnesses affected by emissions, and non-health benefits from emissions 

reductions. Whether the remaining 80% of the costs are recovered by additional benefits not included here 

can not be answered in this analysis. 

 Using these results, we can also comment on the effectiveness of the first LEV standards. These 

standards were more cost effective in reducing pollution: for the same cost to consumers, emissions were 

decreased 4 times greater than those offered by LEV II. This suggests that there are decreasing marginal 

benefits from emissions control, and also that LEV I regulations would nearly have paid for itself in asthma 

                                                                                                                                                                                                 
47 This takes a big leap of faith by assuming that CO will fall by the same amount, but if CO is truly proxying for 
vehicle emissions, it should provide a reasonable starting point. 
48 Note that this assumes the effect of CO is homogenous for all levels of pollution and the coefficient for CO is relevant 
for Rog and NOx. 
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hospital admissions for children alone. 

 Since avoidance behavior as measured by smog alerts has a significant effect on hospitalizations for 

asthma, it is useful to approximate the magnitude of these advisories. 50 To measure the percent reduction 

from an additional advisory conditional on O3 exceeding 20 ppm, specify (14) as:   

 δ = exp {β1 * Smog alert|O3 ≥ 20 ppm)} - 1      (16) 

Shown in table 6A, replacing β1 with its estimated coefficient, the announcement of a smog alert reduces 

asthma hospitalizations by 3 to 6% for children under age 12. 

 Although the coefficient estimates by SES are comparable, table 1B indicates that low SES children 

face considerably higher levels of pollution.  To get a sense of the impact of these higher levels of pollution, 

I approximate the proportional effect of higher pollution levels in low SES areas on asthma by alternatively 

specifying equation (14) as: 

 δ = exp {β0 * (PL – PH)} - 1        (17) 

where PL and PH are the pollution levels for the low and high SES groups, respectively.  These effects, 

shown in table 6B, indicate that higher levels of pollution explain as much as 4% of the difference in asthma 

ER hospitalizations.51  This suggests that although the increased presence of pollution in low SES areas puts 

these children at a higher risk for hospitalization for an asthma attack, there are still many other factors that 

affect hospitalizations. 

7.  Discussion 

 There are three main findings in this paper.  First, CO increases asthma hospitalizations for children 

ages 1-18. Although NO2 appears to have an effect on infants in certain specifications, this finding is not as 

robust as those for CO.  Looking at a broader range of outcomes for infants can offer additional insights. 

These estimates are large in magnitude and suggest that regulations designed to reduce vehicle emissions 

may be a cost-effective policy, although a more comprehensive analysis is necessary. The possibility of an 

                                                                                                                                                                                                 
49 This COI slightly differs from those typically reported in that it does not include lost income, which is difficult to 
define in this case and, even if parents’ income was used, is negligible relative to the costs of hospitalization. 
50 Although the empirical strategy does not explicitly attempt to identify the effect of avoidance behavior, I include 
these estimates to obtain a rough sense of the magnitude of smog alerts. 
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effect for other pollutants, however, can not be ruled out because these estimates are lower bounds of the true 

effect of pollution on health. Furthermore, effects from short-term exposure to pollutants may go undetected 

in a seasonal analysis.  

 A second finding to emerge is that avoidance behavior appears to play a significant role in reducing 

the effect of pollution on childhood asthma, as indicated by the negative effect of smog alerts on admissions. 

Furthermore, avoidance behavior appears to be less actively undertaken by low SES families. Given these 

findings, it is important to understand the effects of other potential sources for avoidance behavior, as it can 

suggest other policies to improve health outcomes.  Moreover, the costs associated with avoidance behavior 

cannot be ignored in a welfare analysis. 

 A third finding is that the net effect of pollution appears to be larger for children of lower SES, 

suggesting that pollution may be responsible for some of the gradient in incidence of asthma by SES. 

Furthermore, neurobiological and economic research has suggested that early shocks to a child’s health can 

persist for many years (Shonkoff and Marshall (1990), Case et. al. (2001), Currie and Hyson (1999)), and 

asthma itself has been associated with later health conditions, including lung cancer (Ernster (1996)).  

Therefore, if poorer families are unable to afford to live in cleaner areas and as a result their children’s health 

development suffers, this would suggest that pollution is one potential mechanism by which SES affects 

health.   

 Since current pollution standards are based on adult health responses, understanding the link between 

pollution and children’s health has become increasingly important to a wide audience, and particularly to the 

EPA.  The next step in this project is to look at the links between air pollution and other health outcomes, 

such as the incidence of low birthweight and other respiratory illnesses.  The empirical strategy developed 

here appears to be fruitful for finding these links and developing more comprehensive measures of some of 

the health benefits from improvements in air quality.  

                                                                                                                                                                                                 
51 This does not necessarily imply that pollution is more likely to induce asthma in low SES children.  High SES 
children could use sources of care other than the hospital. 
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Figure 1: Quarterly Pollution
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Figure 2. Seasonal Variation in Pollution by County
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Figure 3. Ozone Monitors in California 
 

 
 

Figure 4. Ozone Monitors in Los Angeles County 
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Figure 5. Asthma ER Admission Rates by Age

0

1

2

3

4

5

6

92 93 94 95 96 97 98

Year

R
at

e 
pe

r 1
00

0

0-1 1-3 3-6 6-12 12-18 All

Figure 6: All Hospital Admissions for Asthma for Children in U.S.
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Figure 7. Quarterly ER Asthma Rates by Age
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Figure 8. Pollution and Asthma for Ages 1-3 in Zip 92410
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Table 1. Summary Statistics 
 
A. Descriptive Statistics 
 Obser- 

vations 
Groups Mean Std. Dev. ‘Between’ 

Zip SD 
‘Within’ 
Zip SD 

O3 (ppm*10) 23345 842 0.491 0.196 0.113 0.160 
CO (ppm) 23345 842 1.090 0.541 0.374 0.392 
PM10 (µg/m3/100) 23345 842 0.325 0.120 0.090 0.079 
NO2 (ppm*10) 23345 842 0.254 0.107 0.093 0.053 
% normal neonates 23226 842 0.701 0.083 0.064 0.053 
% government insurance 23323 842 0.383 0.224 0.217 0.058 
ave. max. temperature (°F) 23345 842 7.38 0.92 0.35 0.84 
total precipitation (in.) 23345 842 5.81 7.37 1.80 7.15 
semi-annual house price/10,000 17646 735 21.69 14.44 14.56 6.89 
influenza rate (all ages) 23345 842 0.035 0.276 0.065 0.268 
smog alerts 23345 842 0.76 1.71 0.68 1.57 
ER asthma rate age 0-1 23345 842 1.08 3.33 1.42 3.02 
population age 0-1 23345 842 491 397 395 34 
ER asthma rate age 1-3 23623 853 0.27 1.38 0.45 1.30 
population age 1-3 23623 853 1774 1446 1442 112 
ER asthma rate age 3-6 23623 853 0.36 2.76 1.02 2.58 
population age 3-6 23623 853 1654 1334 1321 192 
ER asthma rate age 6-12 23600 852 0.21 0.95 0.31 0.90 
population age 6-12 23600 852 2898 2271 2263 218 
ER asthma rate age 12-18 23577 851 0.18 1.04 0.28 1.01 
population age 12-18 23577 851 1546 1193 1192 101 
Notes: The “between” standard deviation is calculated usingxi  and the “within” is calculated using xit –xi +x. 
 
B. Pollution and Asthma by SES 

Pollutant   Age 
 High Low    High Low 
O3*100 4.764 5.114   0-1 0.771 1.631 
 (0.018) (0.021)    (0.028) (0.039) 
CO 1.053 1.163   1-3 0.217 0.395 
 (0.005) (0.006)    (0.007) (0.019) 
PM10 30.346 35.466   3-6 0.268 0.538 
 (0.105) (0.124)    (0.015) (0.037) 
NO2*100 2.400 2.774   6-12 0.157 0.296 
 (0.010) (0.011)    (0.005) (0.013) 
N 10834 10315   12-18 0.171 0.261 
      (0.006) (0.015) 
Notes: Standard errors in parenthesis. Low SES is defined as zip code percentage of high school dropouts greater than 
the median level of high school dropouts.  
 
C. Asthma Counts by Age 
Counts Age 0-1 Age 1-3 Age 3-6 Age 6-12 Age 12-18 
0 14044 14454 14270 14031 15477 
1 4247 4406 4335 4514 3528 
2 1571 1461 1669 1653 814 
3 628 546 688 736 265 
4 306 244 302 382 78 
5 154 109 158 199 29 
>5 199 119 169 223 22 
Total 21149 21339 21591 21738 20213 
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Table 2. Main Results 
 
Panel A. Fixed Effect Estimates by Age Group 
 (1) (2) (3) (4) (5) 
 Age 0-1 Age 1-3 Age 3-6 Age 6-12 Age 12-18 
O3 -0.077** -0.102** -0.092** -0.098** -0.036 
 (0.026) (0.027) (0.026) (0.025) (0.036) 
CO -0.047 0.096** 0.102** 0.126** 0.186** 
 (0.033) (0.034) (0.032) (0.031) (0.045) 
PM10 -0.021 -0.026 -0.003 -0.015 -0.036 
 (0.022) (0.024) (0.023) (0.021) (0.031) 
NO2 0.118* -0.032 -0.081 -0.014 -0.030 
 (0.054) (0.057) (0.052) (0.050) (0.073) 
ave. max. temp./10,000 -1.932 -3.391 1.763 -4.423 -0.818 
 (3.077) (3.443) (3.253) (3.078) (4.465) 
total precip./10,000 -0.395 -0.850** -0.764** -0.016 0.428 
 (0.257) (0.276) (0.261) (0.241) (0.347) 
log (house price/10,000) -0.035 -0.063 -0.061 -0.138* -0.147 
 (0.055) (0.057) (0.056) (0.056) (0.081) 
% gov't insurance 0.325 0.124 0.247 0.074 0.741* 
 (0.254) (0.263) (0.245) (0.236) (0.343) 
influenza admissions 0.029 0.026 0.158** 0.109* -0.013 
 (0.018) (0.053) (0.052) (0.044) (0.068) 
% normal neonates -0.016     
 (0.223)     
Observations 21075 21331 21567 21715 20207 
Number of groups 759 768 778 784 727 
* significant at 5%; ** significant at 1% 
Notes: Standard errors in parenthesis. Pollutants are normalized to have a mean of zero and standard deviation of one. 
All columns contain seasonal and annual dummy variables, log of population and an indicator variable if house price is 
missing.  
 
Panel B. Fixed Effect Estimates by Age Group with Controls for Avoidance Behavior 
 (1) (2) (3) (4) (5) 
 Age 0-1 Age 1-3 Age 3-6 Age 6-12 Age 12-18 
O3 -0.032 -0.066* -0.016 -0.051 -0.041 
 (0.028) (0.030) (0.028) (0.027) (0.040) 
CO -0.064 0.087* 0.069* 0.115** 0.200** 
 (0.034) (0.034) (0.032) (0.032) (0.046) 
PM10 -0.023 -0.029 -0.004 -0.020 -0.043 
 (0.022) (0.025) (0.023) (0.021) (0.031) 
NO2 0.114* -0.033 -0.084 -0.015 -0.026 
 (0.054) (0.057) (0.052) (0.050) (0.073) 
# of smog alerts -0.035** -0.026** -0.065** -0.031** 0.010 
 (0.008) (0.010) (0.009) (0.009) (0.012) 
Observations 21075 21331 21567 21715 20207 
Number of groups 759 768 778 784 727 
* significant at 5%; ** significant at 1% 
Notes: Standard errors in parenthesis. Pollutants are normalized to have a mean of zero and standard deviation of one. 
All columns include maximum temperature, precipitation, log of population, seasonal and annual dummy variables, log 
of semi-annual house price, % gov't health insurance, and an indicator if smog alert information missing. Column (1) 
includes % normal neonates. 
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Table 3. Fixed Effect Estimates with Single-Pollutants 
 
 (1) (2) (3) (4) (5) 
 Age 0-1 Age 1-3 Age 3-6 Age 6-12 Age 12-18 
O3 -0.009 -0.094** -0.045* -0.069** -0.078* 
 (0.022) (0.024) (0.022) (0.022) (0.032) 
CO -0.029 0.068* 0.038 0.101** 0.171** 
 (0.027) (0.027) (0.026) (0.025) (0.036) 
PM10 -0.015 -0.042* -0.018 -0.017 -0.021 
 (0.018) (0.020) (0.019) (0.017) (0.025) 
NO2 0.019 -0.051 -0.052 0.004 0.036 
 (0.036) (0.039) (0.036) (0.033) (0.049) 
Observations 21075 21331 21567 21715 20207 
Number of groups 759 768 778 784 727 
* significant at 5%; ** significant at 1% 
See notes to Table 2B. Each row within an age group represents results from regression with only that pollutant. 
 
Table 4. Fixed Effect Estimates by Age Group and SES 
 
Panel A. High SES 
 (1) (2) (3) (4) (5) 
 Age 0-1 Age 1-3 Age 3-6 Age 6-12 Age 12-18 
O3 -0.060 -0.042 -0.088 -0.056 -0.040 
 (0.057) (0.057) (0.056) (0.055) (0.071) 
CO -0.007 -0.039 -0.109 0.058 0.170 
 (0.077) (0.074) (0.073) (0.071) (0.090) 
PM10 -0.105* -0.119* -0.040 -0.061 0.007 
 (0.053) (0.052) (0.050) (0.046) (0.061) 
NO2 0.213 -0.010 0.179 0.101 -0.081 
 (0.112) (0.108) (0.106) (0.101) (0.134) 
# of smog alerts -0.045* -0.043* -0.073** -0.070** -0.040 
 (0.020) (0.020) (0.020) (0.020) (0.026) 
Observations 10797 11014 11272 11347 10338 
Number of groups 389 397 407 411 372 
 
Panel B. Low SES 
 (1) (2) (3) (4) (5) 
 Age 0-1 Age 1-3 Age 3-6 Age 6-12 Age 12-18 
O3 -0.015 -0.062 0.013 -0.048 -0.024 
 (0.032) (0.035) (0.032) (0.032) (0.049) 
CO -0.073 0.117** 0.101** 0.146** 0.216** 
 (0.038) (0.040) (0.037) (0.036) (0.055) 
PM10 -0.002 0.000 0.007 -0.011 -0.076* 
 (0.025) (0.028) (0.026) (0.024) (0.036) 
NO2 0.075 -0.051 -0.169** -0.062 -0.006 
 (0.062) (0.067) (0.061) (0.058) (0.088) 
# of smog alerts -0.032** -0.019 -0.063** -0.021* 0.026 
 (0.009) (0.011) (0.010) (0.010) (0.014) 
Observations 10278 10317 10295 10368 9869 
Number of groups 370 371 371 373 355 
* significant at 5%; ** significant at 1% 
See notes to Table 2B. Low (high) SES is defined as zip code percentage of high school dropouts less than (above) the 
median. 
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Table 5. Cost-Benefit Analysis of California Low-Emission Vehicle II Regulations 
A. Fleet Schedule 

 Passenger Cars (PC) Light-duty Trucks (LTD)1 
year LEV I2 ULEV I ULEV II3 SULEV LEV I2 ULEV I3 ULEV II4 SULEV 
2003 560,117 355,406 - - 363,592 363,688 - - 
2004 266,417 292,052 357,054 - 70,546 501,581 155,153 - 
2005 - 192,260 723,263 - - 414,550 312,730 - 
2006 - - 915,523 - - 303,033 424,247 - 
2007 - - 823,972 91,552 - - 703,037 24,243 
2008 - - 823,972 91,552 - - 703,037 24,243 
2009 - - 86,642 228,881 - - 666,673 60,607 
20105 - - 595,090 320,433 - - 642,431 84,849 
Notes: 1LTD includes vehicles with weight < 10,000 lbs.  2LEV I includes diesel PCs. 3ULEV II include LEV II, 
Tier203, and Tier204 vehicles. 4ULEV I includes Tier2010, Tier208, Tier209. 5Fleet schedule remains fixed at 2010 
values for all future years. SULEV stands for super-ultra low emissions vehicle. 
 
B. Incremental Costs from LEV I  C. Number of Admissions and Average Charge by Age 
PC ULEV II  $71.46  Age # of admits. ave. charge 
LTD ULEV II  $156.63   0-1 1899 $6,819 
PC SULEV  $131.05   1-3 1528 $5,915 
LTD SULEV  $192.17   3-6 1865 $6,608 
   6-12 2556 $8,272 
   12-18 1017 $9,207 
 

D. Costs and Benefits 
year % reduct in 

polltn. 
costs benefits benefit/cost 

ratio 
2004 23% $49.82  $11.36  22.8% 
2005 33% $100.67  $16.94  16.8% 
2006 41% $131.87  $20.87  15.8% 
2007 49% $185.65  $25.29  13.6% 
2008 54% $185.65  $27.93  15.0% 
2009 57% $195.13  $29.84  15.3% 
2010 60% $201.45  $31.36  15.6% 
2015 68% $201.45  $36.05  17.9% 
2020 71% $201.45  $37.98  18.9% 
2025 73% $201.45  $39.05  19.4% 
2030 76% $201.45  $40.75  20.2% 
2035 78% $201.45  $42.03 20.9% 
All dollar values are in $1,000,000. 
 
Table 6. Magnitude of Health Advisories and SES 
A. Health Advisories  B. SES  
Age δa  Age δs 

0-1 -3.4%  0-1 4.2%
1-3 -2.6%  1-3 1.8%
3-6 -6.3%  3-6 1.5%
6-12 -3.0%  6-12 2.4%
12-18 1.0%  12-18 4.2%
Notes: δa is the percentage change in ER admissions for asthma from the announcement of a health advisory 
conditional on O3 exceeding 20 ppm. δs is the percentage change in ER admissions for asthma from higher pollution 
levels in low SES areas using pollutants significantly estimated at the 5% level. Low SES is defined as zip code 
percentage of high school dropouts less than median. Coefficient estimates used to obtain δa and δs are from the fixed 
effect specification reported in table 2B. 
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Appendix Table 1. Number of Monitors Over Time and Correlations by Monitor Sampling 
 
 1992 1998 Continuously  

Operated 
Correlation 

O3 171 178 138 .9955 
CO 91 88 75 .9893 
PM10 125 149 98 .9807 
NO2 109 108 87 .9928 
 
Appendix Table 2. Pollution Correlation Matrix 
 
 O3 CO PM10 NO2 
O3 1    
CO -0.22 1   
PM10 0.44 0.52 1  
NO2 0.10 0.86 0.70 1 
 
Appendix Table 3. Correlation Between Actual and Estimated Pollution Levels 
  
Pollutant Correlation Observations Monitors 
O3 0.9245 3141 106 
CO 0.7847 1524 53 
PM10 0.7651 1718 57 
NO2 0.9016 2035 71 
Notes: Weighted pollution levels at each monitor are calculated using an inverse-distance weighted sum of all monitors 
within 20 miles. 
 
Appendix Table 4. Characteristics of Zip Codes Inside and Outside 20 Miles from Monitors for All 
Pollutants 
 
 Far Near |t| 
median HH income 28,703 38,848 14.52 
% urban 14% 84% 39.25 
% white 85% 72% 13.77 
% black 2% 7% 12.64 
% < HS degree 26% 23% 3.97 
% college degree 16% 25% 12.82 
total population < 18 1,510,589 6,490,109 2.74 
average ER asthma rate 0.234 0.283 27.98 
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