The Fundamental Laws of GIScience

Michael F. Goodchild
University of California
Santa Barbara
Tests of a law

- An empirical statement
 - verifiable with respect to the real world
 - the Law of Utility Maximization

- Always true
 - deterministic?
 - does a single counterexample defeat a law?
 - the Second Law of Thermodynamics
 - Newton’s Laws of Motion
Can there be laws in the social sciences?

- Not if a single counterexample can defeat a law
- Ernest Rutherford: “The only result that can possibly be obtained in the social sciences is: some do, and some don’t”
 - a candidate for the First Law of Social Science
Proposed tests of laws in GIScience

- Based on empirical observation
 - observed to be generally true
 - with sufficient generality to be useful as a norm
 - deviations from the law should be interesting

- Dealing with geographic form rather than process
 - to distinguish laws of GIScience from laws of geography, ecology, hydrology, …

- cross-section laws
- equilibrium laws
- historical laws
- developmental laws
- statistical laws
The value of laws

- Teaching
 - laws allow courses to be structured from first principles

- System design
 - laws provide the basis for predicting performance, making design choices

- Physics envy
 - an asset of a strong, robust discipline
Tobler’s First Law

“All things are related, but nearby things are more related than distant things”

– implies process as much as form
– “nearby things are more similar than distant things”
Validity

“Nearby things are less similar than distant things”
- negative spatial autocorrelation
- possible at certain scales
 - the checkerboard
 - retailing
- but negative a/c at one scale requires positive a/c at other scales
- smoothing processes dominate sharpening processes
Formalization

- Geostatistics
 - variogram, covariogram
 - measuring how similarity decreases with distance
 - parameters vary by phenomenon
 - does this make TFL less of a law?
Utility

- Representation
 - GI is reducible to statements of the form \(<x, z>\)
 - the atomic form of GI is unmanageable, encountered only in point samples
 - all other GI data models assume TFL

- Spatial interpolation
 - IDW and Kriging implement TFL
If TFL weren’t true

- GIS would be impossible
 - a point sample is useful only with interpolation
- Life would be impossible
Expanding the horizons

- Other spaces
 - are there spaces for which TFL is not true?
 - digits of π
 - genome

- Other laws of GIScience
Candidate laws

- All important places are at the corners of four map sheets
 - “People think closer things are more similar”
A second (first) law

- TFL describes a second-order effect
 - properties of places taken two at a time
 - a law of spatial dependence
 - is there a law of places taken one at a time?

- Spatial heterogeneity
 - non-stationarity
 - uncontrolled variance
Corollaries of the second law

- There is no average place on the Earth’s surface
- Sampling is problematic
 - one must visit or map all of it to understand its full complexity
- Results depend explicitly on the bounds of the study
- The Noah effect
 - there is a finite probability of an event of any magnitude
 - to observe an event of a given magnitude it is simply necessary to wait long enough
The Eden effect
- El Dorado
- to find a feature of any magnitude it is sufficient to look far enough
 - but unlike time, the Earth’s surface is limited

The Pareto distribution or rank-size rule
- plot log rank against log size
- a model of the extreme upper tail of distributions
- fits well to the world’s largest:
 - cities by population
 - lakes by area
- but not mountains by elevation
Practical implications of the second law

- A state is not a sample of the nation
 - a country is not a sample of the world
- Classification schemes will differ when devised by local jurisdictions
- Figures of the Earth will differ when devised by local surveying agencies
- Global standards will always compete with local standards
Implications for analysis

- Strong argument for place-based analysis, local statistics, geographically weighted regression
 - a middle ground in the nomothetic/idiographic debate
Possible corollary of the heterogeneity law

- For every conceivable pattern in two (three) dimensions there exists an instance on the Earth's surface
 - for every GIS algorithm/indexing scheme/data model there exists a data set for which that algorithm/indexing scheme/data model is optimal
 - "There are more things in Heaven and earth, Horatio, than are dealt with in your philosophy"
3) A fractal principle

- The closer you look the more you see
 - and for many natural phenomena the rate is orderly
 - Richardson plots
 - lengths of national boundaries
 - Spain and Portugal
 - context of 1920s
Australia
\[\log(L(s)) = -0.13\log(s) + 4.4 \]

South Africa
\[\log(L(s)) = -0.4\log(s) + 3.8 \]

Germany
\[\log(L(s)) = -0.12\log(s) + 3.7 \]

Great Britain
\[\log(L(s)) = -0.24\log(s) + 3.7 \]

Portugal
\[\log(L(s)) = 0.12\log(s) + 3.1 \]
Practical implications

- Indexing schemes, quadtrees
 - partitioning of information at different scales

- Length is a function of spatial resolution
 - and variously under-estimated in GIS
 - as are many other properties
 - slope
 - soil class
 - land cover class
 - spatial resolution should always be explicit in GIS analysis
 - easy in raster
 - much more difficult in vector
There are two ways of conceptualizing geographic variation:
- as discrete, countable objects littering an otherwise empty table-top
- as a collection of continuous fields, functions of location
5) The uncertainty principle

- No representation of the Earth’s surface can be complete
 - no measurement of position can be perfect
 - a GIS will always leave doubt about the true nature of the Earth’s surface
Practical implications

- Store measurements not coordinates
 - measurement-based GIS
- Allow topology to trump geometry
- Never test for equality of position
Derivative principles

- Principles that can be derived by combining fundamental ones
- TFL and the principle of uncertainty
 - errors will be spatially autocorrelated
 - relative accuracy will be better than absolute accuracy
 - a map whose absolute positional accuracy is no better than 50m will still show objects in their correct relative location
 - elevations that are accurate to no better than 7m can still be used to estimate slope
Conclusions

- Laws exist in GIScience
 - and should be stated
 - formally or informally?
- Generalizations about the geographic world can be blindingly obvious
 - but stating them is important
- Laws have practical value in GIScience
- Laws have pedagogic value
 - the nature of geographic information
 - how special is spatial?