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ABSTRACT:    Spatial econometric methods deal with the incorporation of spatial interaction and spatial
structure into regression analysis. The field has seen a recent and rapid growth spurred both by theoretical
concerns as well as by the need to be able to apply econometric models to emerging large geocoded data
bases. The review presented in this chapter outlines the basic terminology and discusses in some detail the
specification of spatial effects, estimation of spatial regression models, and specification tests for spatial
effects.    



SPATIAL ECONOMETRICS

Luc Anselin

1. Introduction

Spatial econometrics is a subfield of econometrics that deals with the treatment of spatial interac-

tion (spatial autocorrelation) and spatial structure (spatial heterogeneity) in regression models for

cross-sectional and panel data [Paelinck and Klaassen (1979), Anselin (1988a)]. As such, the field

is similar to geostatistics and spatial statistics, which form an important part of the methodologi-

cal toolbox of the physical scientist [e.g., Ripley (1981), Cressie (1993)]. However, spatial econo-

metrics is distinct from spatial statistics in the same sense as econometrics is distinct from

statistics in general. This albeit subtle distinction boils down to the central role attributed to the

theoretical model rather than the data when it comes to dictating the types of specifications that

are of interest in spatial econometrics. 

A focus on location and spatial interaction has recently gained a more central place not

only in applied but also in theoretical econometrics.1 In the past, models that explicitly incorpo-

rated “space” (or geography) and therefore applications of spatial econometrics were primarily

found in specialized fields such as regional science, urban and real estate economics and eco-

nomic geography [e.g., recent reviews in Anselin (1992a), Anselin and Florax (1995a), Anselin

and Rey (1997), Pace et al. (1998)]. However, more recently, spatial econometric methods have

increasingly been applied in a wide range of empirical investigations in more traditional fields of

economics as well, including, among others, studies in demand analysis [Case (1991)], interna-

tional economics [Aten (1996)], labor economics [Topa (1996)], public economics and local public

finance [Case, Rosen and Hines (1993), Murdoch, Rahmatian and Thayer (1993), Holtz-Eakin

(1994), Brueckner (1998)], and agricultural and environmental economics [Benirschka and Bin-

kley (1994), Murdoch, Sandler and Sargent (1997), Nelson and Hellerstein (1997), Bell and Bocks-

tael (1999)]. In addition, there is a growing methodological literature in econometrics that deals

with alternative model specifications, estimators and test statistics geared to models that incor-

porate the “geography” of the data [recent examples include, among others, Conley (1996),

Driscoll and Kraay (1998), Pinkse and Slade (1998), Kelejian and Prucha (1999a)].

1 The origins of this reaction to the so-called Anglo-Saxon focus in economics on the time domain can be traced
to Isard (1956).



This new attention to specifying, estimating and testing for the presence of spatial inter-

action in the mainstream of applied and theoretical econometrics can be attributed to two major

factors. One is a growing interest within theoretical economics in models that move away from

the atomistic agent as a decision maker acting in isolation to an explicit accounting for the inter-

action of that agent (its preferences, utility, etc.) with other heterogeneous agents in the system.

These new theoretical frameworks specify and study “direct” interaction between agents, in the

form of social norms, neighborhood effects, copy-catting and other peer group effects, and raise

interesting questions about how the individual interactions can lead to emergent collective

behavior and aggregate patterns. Examples of such models are found in the new macroeconom-

ics of Aoki (1994, 1996), in theoretical models of social interaction [Brock and Durlauf (1995),

Akerlof (1997)], interdependent preferences [Alessie and Kapteyn (1991)], models of evolving

trading structures [Ioannides (1990, 1997)], neighborhood spillover effects [Durlauf (1994), Borjas

(1995), Glaeser, Sacerdote and Scheinkman (1996)], and yardstick competition [Besley and Case

(1995), Bivand and Szymanski (1997)]. These frameworks also form some of the underpinnings

for empirical models that encompass strategic interaction between agents [e.g., Case, Rosen and

Hines (1993), Murdoch, Sandler and Sargent (1997), Brueckner (1998)]. Much of this literature is

inspired by principles developed in statistical mechanics, such as the study of interacting particle

systems and random field models [for a review, see Durlauf (1997)], which, interestingly, also

forms a basis for some of the spatial Markov field models developed in spatial statistics [e.g.,

Cressie (1993, Ch. 6)]. Related to this strand in the literature is the revived emphasis on the spa-

tial aspects of Marshallian externalities, agglomeration economies and other spillovers that are

central to the new economic geography reflected in the work of Arthur (1989), Krugman (1991a,

1991b, 1998), Glaeser et al. (1992) and others.

Paralleling and complementing this theoretical motivation, i.e., the need for a methodol-

ogy to handle spatial models, there has also been a second driver behind the increase in demand

for techniques to deal with spatial data from a practical, applied perspective. Irrespective of the

nature of the model of interest (whether spatial or non-spatial), the explosive diffusion of geo-

graphic information systems (GIS) technology and the associated availability of geo-coded socio-

economic data sets (i.e., data sets that contain the location of the observational units) has created

a need for specialized methods to deal with the distinguishing characteristics (primarily spatial

autocorrelation) of such geographic data [Anselin (1989)]. The use of GIS in conjunction with

spatial data analysis and modeling techniques is by now commonplace in applied economics

and policy analysis, especially in real estate and housing economics [Anselin (1998a), Can
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(1998)], environmental and resource economics [Bockstael (1996), Geoghegan, Wainger and

Bockstael (1997)], and development economics [Nelson and Gray (1997)]. The recognition that

standard econometric techniques often fail in the presence of spatial autocorrelation, which is

commonplace in geographic (cross-sectional) data sets, is therefore a major second motivation

for the growing interest in this field.

Historically, spatial econometrics originated as an identifiable field in Europe in the early

1970s because of the need to deal with sub-country data in regional econometric models [e.g.,

Hordijk and Paelinck (1976)]. In the first book-length treatment of the subject, Paelinck and

Klaassen (1979, 5–11) defined the field in terms of five distinguishing characteristics: (a) the role

of spatial interdependence in spatial models; (b) the asymmetry in spatial relations; (c) the

importance of explanatory factors located in other spaces; (d) differentiation between ex-post

and ex-ante interaction; and (e) explicit modeling of space. In Anselin (1988a, 7), spatial econo-

metrics is defined as “the collection of techniques that deal with the peculiarities caused by space

in the statistical analysis of regional science models.” In other words, spatial econometrics deals

with methodological concerns that follow from the explicit consideration of spatial effects, such as

spatial autocorrelation and spatial heterogeneity. This yields four broad areas of interest: (a) the

formal specification of spatial effects in econometric models; (b) the estimation of models that

incorporate spatial effects; (c) specification tests and diagnostics for the presence of spatial effects;

and (d) spatial prediction (interpolation). In this brief review chapter, I will focus on the first three

concerns, since they fall within the central preoccupation of econometric methodology.

The remainder of the chapter is organized as follows. In section 2, I outline some founda-

tions and definitions. In section 3, the specification of spatial regression models is treated, includ-

ing the incorporation of spatial dependence in panel data models and models with qualitative

variables. Section 4 focuses on estimation and section 5 on specification testing. In section 7,

some practical implementation and software issues are addressed. Concluding remarks are for-

mulated in Section 8.

2. Foundations

2.1. Spatial Effects

In a regression context, spatial effects pertain to spatial dependence, or its weaker expression,

spatial autocorrelation, and to spatial heterogeneity.2 The latter is simply structural instability in the

2 In this chapter, I will use the terms spatial dependence and spatial autocorrelation interchangeably.
Obviously, the two are not identical, but typically, the weaker form is used, in the sense of a moment of a joint
distribution. Only seldom is the focus on the complete joint density [a recent exception can be found in Brett
and Pinkse (1997)].
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form of non-constant error variances (heteroskedasticity) or model coefficients (variable coeffi-

cients, spatial regimes) and can be tackled by means of the standard econometric toolbox. How-

ever, there are three reasons why it is important to consider spatial heterogeneity explicitly. First,

the “structure” behind the instability is spatial (or geographic) in the sense that the location of the

observations is crucial in determining the form of the instability. For example, groupwise het-

eroskedasticity could be modeled as different error variances for different compact geographic

subsets of the data. 

More formally, consider a set  of  geographical units (e.g., states, counties, census

tracts), partitioned into  non-overlapping compact subsets  (with ), such that

for any  ( ), , and . Spatial groupwise heteroskedasticity

would then follow in the form of spatially clustered error variances for observation i,

 when . Similarly, variability in the regression coefficients could be specified

to correspond to so-called spatial regimes, or geographic subsets  of the data where the model

slope is different, , for an observation  [for further details, see Anselin (1988a,

1990a)]. Secondly, because the structure is spatial, heterogeneity often occurs jointly with spatial

autocorrelation, and standard econometric techniques are no longer appropriate [e.g., tests for

heteroskedasticity may be misleading, as illustrated in Anselin and Griffith (1988)]. Thirdly, in a

single cross-section, spatial autocorrelation and spatial heterogeneity may be observationally

equivalent.3 For example, a spatial cluster (i.e., observed in locations that are in close proximity)

of extreme residuals may be interpreted as due to spatial heterogeneity (e.g., groupwise het-

eroskedasticity) or as due to spatial autocorrelation (e.g., a spatial stochastic process yielding

clustered values). This requires that both aspects of the problem be structured very carefully to

obtain identifiability of the model parameters, and that one aspect can never be considered in

isolation from the other. In the remainder of the chapter, however, the main focus of attention

will be on spatial dependence.

Spatial autocorrelation, or the coincidence of value similarity with locational similarity,

can be formally expressed by the moment condition

, for (2.1)

where i, j refer to individual observations (locations) and  is the value of a random variable

of interest at that location. This covariance becomes meaningful from a spatial perspective when

the particular configuration of nonzero i, j pairs has an interpretation in terms of spatial struc-

3 For similar concerns in a time series context, see, e.g., Heckman (1991).

S N
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ture, spatial interaction or the spatial arrangement of the observations.

2.2. Spatial Weights and Spatial Lags

In a cross-sectional setting with N observations, there is insufficient information to esti-

mate the N by N covariance matrix (2.1) directly from the data. Even asymptotics are not helpful

since the number of covariances increases with , whereas the sample size only grows with N.

In contrast, when repeated observations on the cross-section are available (as in a panel data set-

ting), it may be possible to exploit the other dimension (i.e., asymptotics in T) and obtain consis-

tent nonparametric cross-sectional covariance matrix estimates.4 In general however, it will be

necessary to impose a structure on the covariance. 

There are three main approaches followed in the literature to address this issue: one

based on the specification of a spatial stochastic process; a second on the direct parametric repre-

sentation of the covariance structure; and a third where the covariance is left generally unspeci-

fied and treated in a non-parametric framework. I return to this issue in the next section. First, it

is important to consider the important concepts of spatial weights and spatial lag operator. 

In parallel to time series analysis, spatial stochastic processes are categorized as spatial

autoregressive (SAR) and spatial moving average (SMA) processes, although there are several

important differences between the cross-sectional and time series contexts.5 Most importantly, in

contrast to the unambiguous notion of a “shift” along the time axis, there is no corresponding

concept in the spatial domain, especially when observations are located irregularly in space.6

Instead of the notion of shift, a spatial lag operator is used, which is a weighted average of random

variables at “neighboring” locations.7 Essential in this concept is the definition of a neighbor-

hood set for each location. This is obtained by specifying for each location i (as the row) the

neighbors as the columns corresponding to non-zero elements  in a fixed (non-stochastic) and

positive N by N spatial weights matrix W.8 Formally, a spatial lag for y at i is then expressed as

, (2.2)

4 Recent reviews of the pertinent issues are given in Frees (1995) and Driscoll and Kraay (1998).
5 See Anselin and Bera (1998) for an extensive and technical discussion.
6 On a regular lattice (e.g., square grid), one can conceive of north, south, east, west shifts [e.g., Whittle (1954)].

Such a model is often used in statistical mechanics, but it is too restrictive for economic applications.
7 In Anselin (1988a), the term spatial lag is introduced to refer to this new variable, to emphasize the similarity

to a distributed lag term rather than a spatial shift.
8 By convention, , i.e., a location is never a neighbor of itself. This is arbitrary, but can be assumed

without loss of generality. For a more extensive discussion of spatial weights, see Anselin (1988a, Ch. 3), Cliff
and Ord (1981), Upton and Fingleton (1985). For a formal discussion of the related notion of a spatial markov
process, see Ripley (1988), Cressie (1993, pp. 402–410).

N2

wij

wii 0=

Wy[ ]i wij yj⋅
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or, in matrix form, as

(2.3)

where y is a N by 1 vector of observations on the random variable. Since for each i the matrix ele-

ments  are only non-zero for those  (where  is the neighborhood set), only the match-

ing  are included in the lag. For ease of interpretation, the elements of the spatial weights

matrix are typically row-standardized, such that for each i, . Consequently, the spatial

lag may be interpreted as a weighted average (with the  being the weights) of the neighbors,

or as a spatial smoother. 

It is important to note that the elements of the weights matrix are non-stochastic and

exogenous to the model. Typically, they are based on the geographic arrangement of the observa-

tions, or contiguity. Weights are non-zero when two locations share a common boundary, or are

within a given distance of each other. However, this notion is perfectly general and alternative

specifications of the spatial weights can be based on distance decay (inverse distance or inverse

distance squared) [Anselin (1980, Ch. 8)], on the structure of a social network [Doreian (1980)], on

economic distance [Case, Rosen and Hines (1993)], k nearest neighbors [Pinkse and Slade (1998)],

or on empirical flow matrices [e.g., pollutant emission flows in Murdoch, Sandler and Sargent

(1997), or trade-based interaction measures in Aten (1996, 1997)]. While this wide range of

options may suggest that the specification of spatial weights is largely arbitrary, this is not the

case. Due to the asymptotics required to obtain consistent and asymptotically normal estimators,

the range of dependence allowed by the structure of W must be constrained. Also, to avoid iden-

tification problems, the weights should truly be exogenous to the model [Manski (1993)]. In spite

of their lesser theoretical appeal, this explains the popularity of geographically derived weights,

since exogeneity is unambiguous. 

2.3. Formal Expression of Spatial Autocorrelation

Spatial Stochastic Process Models

The most often used approach to express spatial autocorrelation is through the specification of a

spatial stochastic process, i.e., a functional relationship between a random variable at a given

location and this same random variable at other locations. The covariance structure then follows

from the nature of the process. For example, given the N by N weights matrix W, a N by 1 vector

of random variables y, and a N by 1 vector of i.i.d. random errors , a simultaneous spatial

autoregressive process is defined as

Wy

wij j Si∈ Si

yj

wij
j

∑ 1=

wij

ε
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, or (2.4)

and a spatial moving average process as

, or , (2.5)

where I is a N by N identity matrix, i a N by 1 vector of ones,  is the common mean of the ran-

dom variables , the i.i.d. zero mean error terms  have a common variance , and  and 

are respectively the autoregressive and moving average parameters.9 As in time series analysis,

it is also possible to write a spatial autoregressive process as an infinite spatial moving average,

since the elements of  are typically less than one and, in addition, in most cases , such

that

. (2.6)

The constraints imposed by the weights structure, together with the specific form of the

spatial process determine the variance-covariance matrix for y as a function of two parameters,

the variance  and the spatial coefficient,  or . For the SAR structure in (2.4), this yields

(since )

. (2.7)

This is a full matrix, which implies that shocks at any location affect all other locations, through a

spatial multiplier effect (or, global interaction). In contrast, for an SMA process, the covariance is

(since )

, (2.8)

which results in “local” interaction between a location and its first (through W) and second order

neighbors (through ), but does not yield a spatial multiplier as in the SAR model.

A major distinction between AR and MA processes in space compared to the time

domain is that even with i.i.d. error terms , the diagonal elements in (2.7) and (2.8) are not con-

stant. Furthermore, the heteroskedasticity depends on the neighborhood structure embedded in

the spatial weights matrix W. Consequently, the process in y is not covariance-stationary. Station-

arity is only obtained in very rare cases, for example on regular lattice structures when each

observation has an identical weights structure, but this is of limited practical use. This lack of sta-

9 In spatial econometrics the main focus is on processes for which the joint distribution is modeled, or, a
simultaneous processes, in contrast to conditional processes. Simultaneity is more appropriate when the
interest is in inference, whereas a conditional approach is natural when the interest is in prediction or spatial
interpolation [see Anselin and Bera (1998) and Cressie (1993, p. 410) for technical details].

y µi–( ) ρW y µi–( ) ε+= y µi–( ) I ρW–( ) 1– ε=

y λWε ε+= y I λW+( )ε=

µ

yi εi σ2 ρ λ

W ρ 1<

y µi–( ) Iε ρWε ρ2W2ε …+ + +=

σ2 ρ λ

E y µi–[ ] 0=

Cov y µi–( ) y µi–( ),[ ] E y µi–( ) y µi–( )′[ ]= σ2 I ρW–( )′ I ρW–( )[ ] 1–
=

E y[ ] 0=

Cov y y,[ ] E yy′[ ]= σ2 I ρW+( ) I ρW+( )′ σ2 I ρ W W′+( ) ρ2WW′+ +[ ]= =

WW′

εi
— 7 —



tionarity has important implications for the types of central limit theorems and laws of large

numbers that need to be invoked to obtain asymptotic properties for estimators and specification

test, a point that has not always been recognized in the literature.

A related specification, which also results in a heteroskedastic variance, is the spatial

error components model outlined in Kelejian and Robinson (1993, 1995, 1997). This spatial pro-

cess is very similar to a spatial MA process, but rather than pertaining to a single error term, it

contains two uncorrelated zero mean error components  and :

(2.9)

where the term  implies a smoothing of neighboring values or “regional” effect, and the

error term  is location-specific. The resulting variance-covariance matrix is (since )

(2.10)

where  and  are the variance components pertaining to the locational “innovation” and

the regional effect respectively. The range of interaction implied by (2.10) is a subset of that in the

spatial MA model, as seen from (2.8).

Direct Representation

A second commonly used approach to the formal specification of spatial autocorrelation

is to express the elements of the variance-covariance matrix in a parsimonious fashion as a

“direct” function of a small number of parameters and one or more exogenous variables. Typi-

cally, this involves an inverse function of some distance metric, for example, 

, (2.11)

where  and  are regression disturbance terms,  is the error variance,  is the distance

separating observations (locations) i and j, and f is a distance decay function such that 

and , with  as a p by 1 vector of parameters on an open subset  of . This

form is closely related to the variogram model used in geostatistics, although with stricter

assumptions regarding stationarity and isotropy.10 Using (2.11) for individual elements, the full

error covariance matrix follows as

10 The specification of spatial covariance functions is not arbitrary, and a number of conditions must be satisfied
in order for the model to be “valid” [details are given in Cressie (1993, pp. 61–63, 67–68 and 84–86)]. For a
stationary process, the covariance function must be positive definite and it is required that  as ,
which is ensured by the conditions spelled out here. Furthermore, most models only consider positive spatial
autocorrelation in this context. An exception is the so-called wave variogram, which allows both positive and
negative correlation due to the periodicity of the process. This model has not seen application outside the
physical sciences and is not considered here.

ψ ε

y Wψ ε+=

Wψ

ε E y[ ] 0=

Cov y y,[ ] E yy′[ ]= σε
2I σψ
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2 σψ

2

Cov εiεj[ ] σ2f dij ϕ,( )=

εi εj σ2 dij
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(2.12)

where, because of the scaling factor , the matrix  must be a positive definite spatial

correlation matrix, with  and , .11 Note that, in contrast to the variance for

the spatial process models (2.7), (2.8) and (2.10), the direct representation model does not induce

heteroskedasticity.

In spatial econometrics, models of this type have been used primarily in the analysis of

urban housing markets, e.g., in Dubin (1988, 1992), Olmo (1995) and Basu and Thibodeau (1998).

While this specification has a certain intuition, in the sense that it incorporates an explicit notion

of spatial clustering as a function of the distance separating two observations (i.e., positive spa-

tial correlation), it is also fraught with a number of estimation and identification problems [Anse-

lin (1999)].

Nonparametric Approaches

A recently suggested alternative specification of the spatial covariance matrix is to estimate its

elements non-parametrically, in the sense of not requiring an explicit spatial process or func-

tional form for the distance decay. This is common in the case of panel data, when the time

dimension is (considerably) greater than the cross-sectional dimension (T >> N) and the “spatial”

covariance is estimated from the sample covariance for the residuals of each set of location pairs

[e.g., in applications of Zellner’s SUR estimator, see Fiebig (1999)].

The new approaches are variants of the well known Newey-West (1987) heteroskedastic-

ity and autocorrelation consistent covariance matrix and have been used in the context of gener-

alized methods of moments (GMM) estimators of spatial regression models (see Section 4.3.).

Conley (1996) suggested a covariance estimator based on a sequence of weighted averages of

sample autocovariances computed for subsets of observation pairs that fall within a given dis-

tance band (or spatial window). Although not presented as such, this has a striking similarity to

the non-parametric estimation of a semi-variogram in geostatistics [see, e.g., Cressie (1993),

pp.69–70], but the assumptions of stationarity and isotropy required in the GMM approach are

stricter than those needed in variogram estimation. In a panel data setting, Driscoll and Kraay

(1998) use a similar idea, but avoid having to estimate the spatial covariances by distance bands.

This is accomplished by using only the cross-sectional averages (for each time period) of the

moment conditions, and by relying on asymptotics in the time dimension to yield an estimator

for the spatial covariance structure.

11  is ensured by selecting a functional form for f such that  for . 

E εε′[ ] σ2Ω dij ϕ,( )=

σ2 Ω dij ϕ,( )

ωii 1= ωij 1≤ i j,∀

ωi i 1= f dij ϕ,( ) 1= dij 0=
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2.4. Aymptotics in Spatial Stochastic Processes

As in time series analysis, the properties of estimators and tests for spatial series are derived

from the asymptotics for stochastic processes. However, these properties are not simply exten-

sions to two dimensions of the time series results. A number of complicating factors are present

and to date some formal results for the spatial dependence case are still lacking. While an exten-

sive treatment of this topic is beyond the scope of the current chapter, three general comments

are in order. First, the intuition behind the asymptotics is fairly straightforward in that regularity

conditions are needed to limit the extent of spatial dependence (memory) and heterogeneity of

the spatial series in order to obtain appropriate (uniform) laws of large numbers and central limit

theorems to establish consistency and asymptotic normality. In this context, it is important to

keep in mind that both SAR and SMA processes yield heteroskedastic variances, so that the

application of results for dependent stationary series are not appropriate.12 In addition to the

usual moment conditions that are similar in spirit to those for heterogeneous dependent pro-

cesses in time [e.g., Pötscher and Prucha (1997)], specific spatial conditions will translate into

constraints on the spatial weights and on the parameter space for the spatial coefficients [for

some specific examples, see, e.g., Anselin and Kelejian (1997), Kelejian and Prucha (1998, 1999a,

1999b), Pinkse and Slade (1998), and Pinkse (1998, 1999)]. In practice, these conditions are likely

satisfied by most spatial weights that are based on simple contiguity, but this is not necessarily

the case for general weights based on economic distance.

A second distinguishing characteristic of asymptotics in space is that the limit may be

approached in two different ways, referred to as increasing domain asymptotics and infill asymp-

totics.13 The former consists of a sampling structure where new “observations” are added at the

edges (boundary points), similar to the underlying asymptotics in time series analysis. Infill

asymptotics are appropriate when the spatial domain is bounded, and new observations are

added in between existing ones, generating a increasingly denser surface. Many results for

increasing domain asymptotics are not directly applicable to infill asymptotics [Lahiri (1996)]. In

most applications of spatial econometrics, the implied structure is that of an increasing domain.

Finally, for spatial processes that contain spatial weights, the asymptotics require the use

of CLT and LLN for triangular arrays [Davidson (1994, Ch. 19, 24)]. This is caused by the fact that

for the boundary elements the “sample” weights matrix changes as new data points are added

12 Specifically, this may limit the applicability of GMM estimators that are based on a central limit theorem for
stationary mixing random fields such as the one by Bolthausen (1982), used by Conley (1996).

13 Cressie (1993, pp. 100–101).
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[i.e., the new data points change the connectedness structure for existing data points].14 Again,

this is an additional degree of complexity, which is not found in time series models.

3. Spatial Regression Models

3.1. Spatial Lag and Spatial Error Models

In the standard linear regression model, spatial dependence can be incorporated in two distinct

ways: as an additional regressor in the form of a spatially lagged dependent variable (Wy), or in

the error structure ( ). The former is referred to as a spatial lag model and is appropriate

when the focus of interest is the assessment of the existence and strength of spatial interaction.

This is interpreted as substantive spatial dependence in the sense of being directly related to a

spatial model [e.g., a model that incorporates spatial interaction, yardstick competition, etc.]. Spa-

tial dependence in the regression disturbance term, or a spatial error model can take any of the

forms outlined in Section 2.3. and is referred to as nuisance dependence. This is appropriate

when the concern is with correcting for the potentially biasing influence of the spatial autocorre-

lation, due to the use of spatial data (irrespective of whether the model of interest is spatial or not). 

Formally, a spatial lag model, or a mixed regressive, spatial autoregressive model is

expressed as

(3.1)

where  is a spatial autoregressive coefficient,  is a vector of error terms, and the other notation

is as before.15 Unlike what holds for the time series counterpart of this model, the spatial lag term

Wy is correlated with the disturbances, even when the latter are i.i.d. This can be seen from the

reduced form of (3.1),

(3.2)

in which each inverse can be expanded into an infinite series as in (2.6), including both the

explanatory variables and the error terms at all locations (the spatial multiplier). Consequently,

the spatial lag term must be treated as an endogenous variable and proper estimation methods

must account for this endogeneity (OLS will be biased and inconsistent due to the simultaneity

bias).

A spatial error model is a special case of a regression with a non-spherical error term, in

which the off-diagonal elements of the covariance matrix express the structure of spatial depen-

14 See Kelejian and Prucha (1999a, 1999b).
15 For ease of exposition, the error term is assumed to be i.i.d., although various forms of heteroskedasticity can

be incorporated in a straightforward way [Anselin (1988a), Chapter 6].

E εiεj[ ] 0≠

y ρWy Xβ ε+ +=

ρ ε

y I ρW–( ) 1– Xβ I ρW–( ) 1– ε+=
— 11 —



dence. Consequently, OLS remains unbiased, but it is no longer efficient and the classical estima-

tors for standard errors will be biased. As outlined in Section 2.3., the spatial structure can be

specified in a number of different ways, and (except for the non-parametric approaches) results

in a error variance covariance matrix of the form 

, (3.3)

where  is a vector of parameters, such as the coefficients in a SAR or SMA error process. When

the error process is SAR, the resulting model can also be expressed as a spatial lag specification,

in the form of spatial Durbin or spatial common factor model [Anselin (1980)]. The SAR error

model is

 and . (3.4)

Since , and thus , (3.4) is equivalent to

, (3.5)

which is a spatial lag model with an additional set of spatially lagged exogenous variables (WX)

and a set of k nonlinear (common factor) constraints on the coefficients (the product of the spatial

autoregressive coefficient with the regression coefficients β should equal the negative of the coef-

ficients of WX). The similarity between the error model (3.5) and the “pure” spatial lag model

(3.1) will complicate specification testing in practice, since tests designed for a spatial lag alterna-

tive will also have power against a spatial error alternative, and vice versa.

Most spatial regression models used in practice are based on a single spatial weights

matrix. However, in principle, higher order models are possible as well, such as higher order

SAR models [e.g., Brandsma and Ketellapper (1979), Blommestein (1983, 1985)], spatial autore-

gressive, moving average specifications or SARMA [Huang (1984)], and models that include

both a spatially lagged dependent variable as well as a SAR error process [Case (1992)]. In the

specification of such higher order models, care must be taken to ensure that the weights are

unique, orthogonal (non-overlapping) and that all coefficients are identified.16

3.2. Spatial Dependence in Panel Data Models

When observations are available across space as well as over time, the additional dimension

allows the estimation of the full covariance of one type of association, using the other dimension

to provide the asymptotics (e.g., in SUR models with N << T). However, as in the pure cross-sec-

tional case, there is insufficient information in the NT observations to estimate the complete

16 For a more extensive discussion, see Blommestein (1985), Anselin and Smirnov (1996), and Anselin and Bera
(1998, pp. 251–252).

E εε′[ ] Ω θ( )=

θ

y Xβ ε+= ε λWε u+=

ε I λW–( ) 1– u= y Xβ I λW–( ) 1– u+=

y λWy Xβ λWXβ– ε+ +=
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 covariance matrix , (with  and ) without imposing some structure.

For small N and large T, the asymptotics in the time domain can be exploited to obtain a non-

parametric estimate of cross-sectional dependence, while time dependence must be parameter-

ized. Similarly, for large N and small T, the asymptotics in the spatial domain can be exploited to

yield a non-parametric estimate of serial (time) dependence, while spatial dependence must be

parameterized. As in the pure cross-sectional case, the latter requires the use of a spatial weights

matrix. In each of these situations, asymptotics are only needed in one of the dimensions while

the other can be treated as fixed.

When both spatial as well as serial dependence are parameterized, a range of specifica-

tions can be considered, allowing different combinations of the two. For ease of exposition,

assume that the observations are stacked by time period, i.e., they can be considered as T time

slices of N cross-sectional units. Restricting attention to “lag” dependence, and with f(z) as a

generic designation for the regressors (which may be lagged in time and/or space), four types of

models can be distinguished.

(a) pure space-recursive, in which the dependence pertains to neighboring locations in a differ-

ent period, or, 

, (3.6)

where, using the same notational convention as in (2.2),  is the i-th element of

the spatial lag vector applied to the observations on the dependent variable in the previ-

ous time period (using a N by N spatial weights matrix for the cross-sectional units). 

(b) time-space recursive, in which the dependence relates to the same location as well as the

neighboring locations in another period, or,

(3.7)

(c) time-space simultaneous, with both a time-wise and a spatially lagged dependent variable,

or, 

(3.8)

where  is the i-th element of the spatial lag vector in the same time period.

(d) time-space dynamic, with all forms of dependence, or, 

. (3.9)

In order to estimate the parameters of the time-space simultaneous model, asymptotics are

NT( )2
Cov yityjs[ ] 0≠ i j≠ t s≠

yit γ Wyt 1–[ ]
i

f z( ) εit+ +=

Wyt 1–[ ]
i

yit λyit 1– γ Wyt 1–[ ]
i

f z( ) εit+ + +=

yit λyit 1– ρ Wyt[ ]
i

f z( ) εit+ + +=

Wyt[ ]
i

yit λyit 1– ρ Wyt[ ]
i

γ Wyt 1–[ ]
i

f z( ) εit+ + + +=
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needed in the cross-sectional dimension, while for the time-space dynamic model, asymptotics

are needed in both dimensions. For the other models, the type of asymptotics required are deter-

mined by the dependence structure in the error terms. For example, the pure space-recursive

model with i.i.d. errors satisfies the assumptions of the classical linear model and can be esti-

mated by means of OLS.

Spatial lag and spatial error dependence can be introduced into the cross-sectional

dimension of traditional panel data models in a straightforward way. For example, in a spatial

SUR model, both autoregressive as well as regression parameters are allowed to vary by time

period, in combination with a non-parametric serial covariance. The spatial lag formulation of

such a model would be (in the same notation as before):

(3.10)

with  and .17

An important issue to consider when incorporating spatial dependence in panel data

models is the extent to which fixed effects may be allowed. Since the estimation of the spatial

process models requires asymptotics in the cross-sectional domain ( ), fixed effects (i.e., a

dummy variable for each location) would suffer from the incidental parameter problem and no

consistent estimator exists. Hence, fixed cross-sectional effects are incompatible with spatial pro-

cesses and instead a random effects specification must be considered.

3.3. Spatial Dependence in Models for Qualitative Data

Empirical analysis of interacting agents requires models that incorporate spatial dependence for

discrete dependent variables, such as counts or binary outcomes [Brock and Durlauf (1995)]. This

turns out to be quite complex and continues to be an active area of research.18 While an extensive

discussion of the technical aspects associated with spatial discrete choice models is beyond the

scope of the current chapter, the salient issues may be illustrated with a spatial version of the pro-

bit model, which has recently received considerable attention.19 

The point of departure is the familiar expression for a linear model in a latent (unob-

served) dependent variable 

(3.11)

17 For further details, see Anselin (1988a, 1988b). A recent application is Baltagi and Li (1999).
18 For an extensive treatment of these so-called auto-models, see Besag (1974), and also Cressie and Read (1989),

Cressie (1993, pp. 427–428), and Kaiser and Cressie (1997).
19 Methodological issues associated with spatial probit models are considered in Case (1992), McMillen (1992,

1995), Bolduc, Fortin and Gordon (1997), Heagerty and Lele (1998), Pinkse and Slade (1998) and Beron and
Vijverberg (1999).

yit ρ t Wyt[ ]
i

x′itβ t εit+ +=

Var εit[ ] σt
2

= E εitεis[ ] σts=

N ∞→
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∗

yi
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where  is a random variate for which a given distribution is assumed (e.g., the normal for the

probit model). The realization of  is observed in the form of discrete events,  for

, and  for . The discrete events are related to the underlying probability

model through the error term, for example,  implies , and, therefore, 

(3.12)

where  is the cumulative distribution function for the standard normal.

Spatial autocorrelation can be introduced into this model in the form of a spatial autore-

gressive process for the error term  in (3.11), or

(3.13)

where  is an autoregressive parameter, the  are the elements in the i-th row of a spatial

weights matrix, and  may be assumed to be i.i.d. standard normal. As a consequence of the

spatial multiplier in the autoregressive specification, the random error at each location now

becomes a function of the random errors at all other locations as well. Its distribution is multi-

variate normal with N by N variance-covariance matrix

, (3.14)

As pointed out in Section 2.3., besides being non-diagonal, (3.14) is also heteroskedastic. Conse-

quently, the usual inequality conditions that are at the basis of (3.12) no longer hold, and

 cannot be derived from the univariate standard normal distribution, but rather

must be expressed explicitly as the marginal distribution of a N-dimensional multivariate normal

vector, whose variance-covariance matrix contains the autoregressive parameter . This is non-

standard and typically not analytically tractable, which greatly complicates estimation and spec-

ification testing. Similar issues are faced in the spatial lag model for a latent variable.20

When the dependent variable is a count or proportion, the latent variable model is not

used, but instead the dependent variables is modeled directly as a random variable with a Poisson

or binomial distribution. Introducing spatial dependence into these models is not trivial, since the

multivariate versions of discrete distributions are not as tractable as the multivariate normal. This

is typically handled by means of hierarchical Bayesian modeling and estimation is based on com-

putation intensive methods such as Gibbs sampling and Markov Chain Monte Carlo.21

20 For an extensive discussion, see Beron and Vijverberg (1999).
21 For a recent review of the issues, see, e.g., Clayton and Kaldor (1987), Besag, York and Mollie (1991), Besag et

al. (1995), Waller, Carlin and Xia (1997), Waller et al. (1997) and Diggle, Tawn and Moyeed (1998).
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4. Estimation

4.1. Maximum Likelihood Estimation

Maximum likelihood (ML) estimation of spatial lag and spatial error regression models was first

outlined by Ord (1975).22 The point of departure is an assumption of normality for the error

terms  in (3.1) or  in (3.4). The joint likelihood then follows from the multivariate normal dis-

tribution for y. Unlike what holds for the classic regression model, the joint log likelihood for a

spatial regression does not equal the sum of the log likelihoods associated with the individual

observations. This is due to the two-directional nature of the spatial dependence, which results in

a Jacobian term that is the determinant of a full N by N matrix, e.g.,  (spatial lag). 

For the SAR error model, the log likelihood is based on the multivariate normal case, e.g.,

as used in the general treatments of Magnus (1978) and Breusch (1980). Since , it

follows that, with  and ,

(4.1)

Closer inspection of the last term in (4.1) reveals that, conditional upon , a maximization of the

log likelihood is equivalent to the minimization of the sum of squared residuals in a regression of

a spatially filtered dependent variable  on a set of spatially filtered explanatory

variables . The first order conditions for  indeed yield the familiar general-

ized least squares estimator:

(4.2)

and, similarly, the ML estimator for  follows as:

(4.3)

with . However, unlike the time series case, a consistent estimator for  cannot be

obtained from the OLS residuals and therefore the standard two-step FGLS approach does not

apply.23 Instead, the estimator for  must be obtained from an explicit maximization of a concen-

trated likelihood function [for details, see Anselin (1988a, Chapter 6) and Anselin and Bera

(1998)]. Also, while the SAR error model estimator (4.2) yields an expression in spatially filtered

22 Other classic treatments of ML estimation in spatial models can be found in Whittle (1954), Besag (1974),
Mardia and Marshall (1984), Warnes and Ripley (1987), and Mardia and Watkins (1989).

23 For a formal demonstration, see Anselin (1988a). In Kelejian and Prucha (1997) it is also shown that an
approach based on the spatial Durbin specification yields an inconsistent estimator.
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variables, this is not the case for the SMA error model, since its variance (2.8) requires the inverse

of a N by N matrix in order to obtain a FGLS expression. This model has therefore not seen much

application in empirical practice [see, e.g., Sneek and Rietveld (1999)].24

The log-likelihood for the spatial lag model is obtained using the same general principles

[see Anselin (1988, Chapter 6) for details] and takes the form

(4.4)

The minimization of the last term in (4.4) corresponds to OLS, but since this ignores the log Jaco-

bian , OLS is not a consistent estimator in this model. As in the spatial error model,

there is no satisfactory two-step procedure and estimators for the parameters must be obtained

from an explicit maximization of the likelihood. This is greatly simplified since both  and

 can be obtained conditional upon  from the first order conditions:

(4.5)

or, with , , , ,

(4.6)

and

(4.7)

This yields a concentrated log-likelihood in a single parameter, which is straightforward to opti-

mize by means of direct search techniques [see Anselin (1980, 1988a) for derivations and details].

Both spatial lag and spatial error models are special cases of a more general specification

that may include forms of heteroskedasticity as well. This also provides the basis for ML estima-

tion of spatial SUR models with spatial lag or spatial error terms [Anselin (1980, Ch. 10)]. Simi-

larly, ML estimation of error components models with spatial lag or spatial error terms can be

implemented as well. Spatial models with discrete dependent variables are typically not esti-

mated by means of ML, given the prohibitive nature of evaluating multiple integrals to deter-

mine the relevant marginal distributions.25

24 Note that the spatial error components specification (2.10) and the direct representation models (2.12) also
suffer from this problem.

25 For details, see, e.g., McMillen (1992), Pinkse and Slade (1998), Beron and Vijverberg (1999), and also, for
general principles, Poirier and Ruud (1988).
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Finally, it is important to note that models with spatial dependence do not fit the classical

framework [e.g., as outlined in Rao (1973)] under which the optimal properties (consistency,

asymptotic efficiency, asymptotic normality) of ML estimators are established. This implies that

these properties do not necessarily hold and that careful consideration must be given to the explicit

formulation of regularity conditions. In general terms, aside from the usual restrictions on the vari-

ance and higher moments of the model variables, these conditions boil down to constraints on the

range of dependence embodied in the spatial weights matrix.26 In addition, to avoid singularity or

explosive processes, the parameter space for the coefficient in a spatial process model is restricted

to an interval other than the familiar −1, +1. For example, for a SAR process, the parameter space is

, where  and  are the smallest (on the real line) and largest eigen-

values of the spatial weights matrix W. For row-standardized weights, , but ,

such that the lower bound on the parameter space is less than −1 [Anselin (1980)]. This must be

taken into account in practical implementations of estimation routines.

4.2. Spatial Two Stage Least Squares

The endogeneity of the spatially lagged dependent variable can also be addressed by means of

an instrumental variables or two stage least squares approach [Anselin (1980, 1988a, 1990b),

Land and Deane (1992), Kelejian and Robinson (1993), Kelejian and Prucha (1998)]. As demon-

strated in Kelejian and Robinson (1993), the choice of an instrument for Wy follows from the con-

ditional expectation in the reduced form (3.2), 

. (4.8)

Apart from the exogenous variables X (which are always instruments), this includes their spatial

lags as well, suggesting WX as a set of instruments.27

Under a set of reasonable assumptions that are easily satisfied when the spatial weights

are based on contiguity, the spatial two stage least squares estimator achieves the consistency

and asymptotic normality properties of the standard 2SLS [see, e.g., the theorems spelled out in

Schmidt (1976)].28 A straightforward extension is the application of 3SLS to the spatial SUR

model with a spatial lag [Anselin (1988a, Chapter 10)]. However, 2SLS is not appropriate to

obtain a consistent estimator for the nuisance parameter in a spatial error model, for example

based on the spatial Durbin formulation [(3.5)], as demonstrated by Kelejian and Prucha (1997).

26 For a careful consideration of these issues, see Kelejian and Prucha (1999a).
27 Higher lags may be included as well to improve precision of the estimator, although this may also increase its

bias. When other (i.e., non-spatial) endogenous variables are included in the specification, they will require
instruments as well, in the standard fashion.

28 For technical details, see, e.g., Kelejian and Robinson (1993), Kelejian and Prucha (1998).
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The spatial 2SLS model is extended to include spatial error components in Kejejian and Robinson

(1993) and SAR errors in Kelejian and Prucha (1998).

4.3. Method of Moments Estimators

Recently, a number of approaches have been outlined to estimate the coefficients in a spatial

error model as an application of general principles underlying the method of moments. Kelejian

and Prucha (1999a) develop a set of moment conditions that yield estimation equations for the

parameter of a SAR error model. Specifically, assuming an i.i.d. error vector for u in (3.4), the fol-

lowing three conditions readily follow

(4.9)

where tr is the matrix trace operator. Replacing u by  (with e as the vector of OLS resid-

uals) in (4.9) yields a system of three equations in the parameters ,  and . Kelejian and

Prucha (1999a) suggest the use of nonlinear least squares to obtain a consistent generalized

moment estimator for  from this system, which can then be used to obtain consistent estimators

for the  in a FGLS approach. Since the  is considered as a nuisance parameter, its significance

(as a test for spatial autocorrelation) cannot be assessed, but its role is to provide a consistent esti-

mator for the regression coefficients.29

A different approach is taken in the application of Hansen’s (1982) generalized method of

moments estimator (GMM) to spatial error autocorrelation in Conley (1996). This estimator is the

standard minimizer of a quadratic form in the sample moment conditions, where the covariance

matrix is obtained in non-parametric form as an application of the ideas of Newey and West

(1987). Specifically, the spatial covariances are estimated from weighted averages of sample

covariances for pairs of observations that are within a given distance band from each other. Note

that this approach requires covariance stationarity, which is only satisfied for a restricted set of

spatial processes (e.g., it does not apply to SAR error models).

Pinkse and Slade (1998) use a set of moment conditions to estimate a probit model with

SAR errors. However, they focus on the induced heteroskedasticity of the process and do not

explicitly deal with the spatial covariance structure.30

29 A recent application of this method is given in Bell and Bockstael (1999). An extension of this idea to the
residuals of a spatial 2SLS estimation is provided in Kelejian and Prucha (1998).

30 See also Case (1992) and McMillen (1992) for a similar focus on heteroskedasticity in the spatial probit model.
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4.4. Other Estimation Methods

A number of other approaches have been suggested to deal with the estimation of spatial regres-

sion models. An early technique is the so-called coding method, originally examined in Besag

and Moran (1975) and Besag (1977).31 This approach consists of selecting a subsample from the

data such that the relevant neighbors are removed (a non-contiguous subsample). This in effect

eliminates the simultaneity bias in the spatial lag model, but at the cost of converting the model

to a conditional one and with a considerable reduction of the sample size (down to 20% of the

original sample for irregular lattice data). The advantage of this approach is that standard meth-

ods may be applied (e.g., for discrete choice models). However, it is not an efficient procedure

and considerable arbitrariness is involved in the selection of the coding scheme.

Another increasingly common approach consists of the application of computational esti-

mators to spatial models. A recent example is the recursive importance sampling (RIS) estimator

[Vijverberg (1997)] applied to the spatial probit model in Beron and Vijverberg (1999).

A considerable literature also exists on Bayesian estimation of spatial models, but a

detailed treatment of this is beyond the current scope.32

5. Specification Tests

5.1. Moran’s I

The most commonly used specification test for spatial autocorrelation is derived from a statistic

developed by Moran (1948, 1950a, 1950b) as the two-dimensional analog of a test for univariate

time series correlation [see also Cliff and Ord (1972, 1973)]. In matrix notation, Moran’s I statistic

is

(5.1)

with e as a vector of OLS residuals and , a standardization factor that corresponds

to the sum of the weights for the non-zero cross-products. The statistic shows a striking similar-

ity to the familiar Durbin-Watson test.33 Inference for Moran’s I is based on a normal approxima-

tion, using a standardized z-value obtained from expressions for the mean and variance of the

statistic [Cliff and Ord (1972, 1981)]. Alternatively, as shown in Tiefelsdorf and Boots (1995), an

exact test can be constructed based on numerical integration and the principles outlined in Imhof

(1961) and Koerts and Abrahamse (1968).

31 See also the discussion in Haining (1990, pp. 131–133).
32 For a review, see the references in footnote 21, and also Hepple (1995) and LeSage (1997).
33 For example, for row-standardized weights, , and . See Anselin and Bera (1998) for an

extensive discussion.
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Moran’s I test has been shown to be locally best invariant [King (1981)] and consistently

outperforms other tests in terms of power in simulation experiments [see, e.g., Bartels and

Hordijk (1977), Anselin and Rey (1991), Anselin and Florax (1995b), Kelejian and Robinson

(1998)]. Its application has been extended to residuals in 2SLS regression in Anselin and Kelejian

(1997), and to generalized residuals in probit models in Pinkse (1998, 1999). General formal con-

ditions and proofs for the asymptotic normality of Moran’s I in a wide range of regression mod-

els are given in Pinkse (1998) and Kelejian and Prucha (1999b). The consideration of Moran’s I in

conjunction with spatial heteroskedasticity is covered in Kelejian and Robinson (1998, 1999).34

5.2. ML Based tests

When spatial regression models are estimated by maximum likelihood, inference on the spatial

autoregressive coefficients may be based on a Wald or asymptotic t-test (from the asymptotic

variance matrix) or on a likelihood ratio test [see Anselin (1988, Chapter 6), Anselin and Bera

(1998)]. Both approaches require that the alternative model (i.e., the spatial model) be estimated.

In contrast, a series of test statistics based on the Lagrange Multiplier (LM) or Rao Score (RS)

principle only require estimation of the model under the null. The LM/RS tests also allow for the

distinction between a spatial error and a spatial lag alternative.35

A LM/RS test against a spatial error alternative was originally suggested by Burridge

(1980) and takes the form

(5.2)

This statistic has an asymptotic  distribution and, apart from a scaling factor, corresponds

to the square of Moran’s I.36 From several simulation experiments [Anselin and Rey (1991),

Anselin and Florax (1995b)] if follows that Moran’s I has slightly better power than the 

test in small samples, but the performance of both tests becomes indistinguishable in medium

and large size samples. The LM/RS test against a spatial lag alternative was outlined in Anselin

(1988c) and takes the form 

(5.3)

where .This statistic also has an

asymptotic  distribution. 

34 See also Kelejian and Robinson (1992) for an alternative test statistic.
35 Moran’s I is not based on an explicit alternative and has power against both [see Anselin and Rey (1991)].
36 As shown in Anselin and Kelejian (1997) these tests are asymptotically equivalent.
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Since both tests have power against the other alternative, it is important to take account

of possible lag dependence when testing for error dependence and vice versa. This can be imple-

mented by means of a joint test [Anselin (1988c)] or by constructing tests that are robust to the

presence of local misspecification of the other form [Bera and Yoon (1993), Anselin et al. (1996)]. 

The LM/RS principle can also be extended to more complex spatial alternatives, such as

higher order processes, spatial error components and direct representation models [Anselin

(1999)], to panel data settings [Anselin (1988b)], and to probit models [Pinkse (1998, 1999), Pinkse

and Slade (1998)]. A common characteristics of the LM/RS tests against spatial alternatives is

that they do not lend themselves readily to a formulation as a  expression based on an auxil-

iary regression. However, as recently shown in Baltagi and Li (1998), it is possible to obtain tests

for spatial lag and spatial error dependence in a linear regression model by means of Davidson

and MacKinnon’s (1984, 1988) double length artificial regression approach.

6. Implementation Issues

To date, spatial econometric methods are not found in the main commercial econometric and sta-

tistical software packages, although macro and scripting facilities may be used to implement

some estimators [Anselin and Hudak (1992)]. The only comprehensive software to handle both

estimation and specification testing of spatial regression models is the special-purpose SpaceStat

package [Anselin (1992b, 1998b)]. Maximum likelihood estimation of spatial models is also

included in the Matlab routines of Pace and Barry (1998) and estimation of spatial error models is

part of the S+Spatialstats add-on to S-Plus [MathSoft (1996)].37 

In contrast to maximum likelihood estimation, method of moments and 2SLS can easily

be implemented with standard software, provided that spatial lags can be computed. This

requires the construction of a spatial weights matrix which must often be derived from informa-

tion in a geographic information system [e.g., Can (1996)]. Similarly, once a spatial lag can be

computed, the LM/RS statistics are straightforward to implement. 

The main practical problem is encountered in maximum likelihood estimation where the

Jacobian determinant must be evaluated for every iteration in a nonlinear optimization proce-

dure. The original solution to this problem was suggested by Ord (1975), who showed how the

log Jacobian can be decomposed in terms that contain the eigenvalues of the weights matrix ,

37 Neither of these toolboxes include specification tests and S+Spatialstats has no routines to handle the spatial
lag model.
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. (6.1)

This is easy to implement in a standard optimization routine by treating the individual elements

in the sum as observations on an auxiliary term in the log-likelihood [see Anselin and Hudak

(1992)]. However, the computation of the eigenvalues quickly becomes numerically unstable for

matrices of more than 1,000 observations. In addition, for large data sets this approach is ineffi-

cient in that it does not exploit the high degree of sparsity of the spatial weights matrix. Recently

suggested solutions to this problem fall into two categories. Approximate solutions avoid the

computation of the Jacobian determinant, but instead approximate it by a polynomial function or

by means of simulation methods [e.g., Griffith (1992), Griffith and Sone (1995), Martin (1993),

Barry and Pace (1999)]. Exact solutions are based on Cholesky or LU decomposition methods

that exploit the sparsity of the weights [Pace (1997), Pace and Barry (1997a, 1997b)], or use a char-

acteristic polynomial approach [Smirnov and Anselin (1999)]. While much progress has been

made, considerable work remains to be done to develop efficient algorithms and data structures

to allow for the analysis of very large spatial data sets.

7. Concluding Remarks

This review chapter has been an attempt to present the salient issues pertaining to the

methodology of spatial econometrics. It is by no means complete, but it is hoped that sufficient

guidance is provided to pursue interesting research directions. Many challenging problems

remain, both methodological in nature as well as in terms of applying the new techniques to

meaningful empirical problems. Particularly in dealing with spatial effects in models other than

the standard linear regression, much needs to be done to complete the spatial econometric tool-

box. It is hoped that the review presented here will stimulate statisticians and econometricians to

tackle these interesting and challenging problems.
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